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A Nonlinear Finite Element Formulation for Very Large Deformation
based on Updated Material Reference Frame
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Abstract

A nonlinear finite element formulation which has the capability of handling very large geometrical
changes is presented. The formulation is based on an updated material reference frame and hence
true stress-strain test can be directly applied to properly characterize properties of materials which
are subjected to very large deformation. For the large deformation, a consistent formulation based
on the continuum mechanics approach is derived. The kinematics is referred to an updated material
frame. Body equilibrium is also established in an updated geemetry and the second Piola-Kirchhoff
stress and the updated Lagrangian strain tensor are used in the formulation.

Numerical examples for very large deformation of framed structures and plane solids are analyzed
for verification purposes. The numerical solutions are obtained by an incremental numerical proce-
dure. The importance of handing material properties properly is also demonstrated.
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1 .ilntroduction

In recent years, behaviors of structures subjec-
ted to Sirge deformation Have been the summ
of considerable research. For a rmhstm’ o
of such behaviors, both geometric and miwemal
nonlinearities should be considered. Different. for-
mulations and procedures to accommodate the
nonlinear behaviors of large deformation have
been suggested’'®. Among them, two types of
Lagrangian formulations have been widely used
in the finite element applications.

The first type is the Total Lagrangian Formula-
tion(TLF) where the deformation of a body is
measured from its own initial reference frame.
Any subsequent deformation of the body is also
referred to the initial material frame. The use of
TLF is appealing’ because of the simplicity with
which taterial rates of changes can be calculated.
Angther advantage arises in the treatment of bou-
ndary: conditions on the surface of the body which
is changing dumng its deformation. Smce the for-
mqlatlon refers the motion and force to a fixed
referente cmmguratlon, it enablesione to treat the
coupling with the geometrical changes in a relati-
vely simple manner. The disadvantages of the!for-
mulation stem from the requirements that the
adopt a mathematical consistent state of stresses
and stress rates acting on the current configura-
tion, the reference to the initial reference configu-
ration leads to a formulation which is physically
artificial, and hence it ‘becomes difficult to eva-
luate materigl parameters. Another difficulty is the
numerical handling of the excessive deformations
of ‘a stricture subjected to very large deformiation
changes may cduse a great deal of distortion in
the original finite element mesh, and such distor-
tiens may -greatly affect the accuracy and the sta-
bility of the solution procedure.

The second type is the Updated Lagrangial For-
mulation(ULF) where the current configuration of
the body is taken as the reference for the varia-
tional formulation although the basic kinematics
of the continuum is still based on a fixed material
frame. Owing to the nature of each formulation
and its reference configuration, this formulation

has some advantages over TLF. For example, the
boundary condition updation and mesh- distortion
seem to bc eamr to hamue and the choice of
i tion as th Wm&&hﬂr the
Mﬂhﬂw ﬂnrmwation may result in neglecting
nonlinear terms of kinematic variables.
Most of the current. large deformation algori-

thms show serioys numerical limitations. Typica-

lly, the solutions become unstable at a certain
point either when the iterations fail to converge
or the algorithms fail to handle the negative defo-
rmatndn gradient when the deformation becomes
very large. A more serious problem common to
all formulations is that the definitions of stress
and strain, their increments and constitutive
equations include the geometrical couplings, and
hence correlating them to the material testing
data become difficult.

The objective of this paper is to derive a nonli-
near finite element formulation which has the ca-
pability of (a) tandling very Iaqge geometrical cha-
ngas w1thout the need for lengthy iterations and
(b) handling the material data more accurately.
The formulation is based on an updated material
reference framie and true stress-strain data are
proposed to characterize material properties.

2. Continuum formulation

Consider the motion of a body in a Cartesian
rectangular coordinate system as shown Figure
2.1 where the body is subjected to large configu-
rational ichanges due to: external loadings. To em-
ploy an'incremental formulation, a time variable
is used to comveniently describe: theload incre-
ment | and the - corresponding motions.

In figure 2.1, three configurations are conside-
red: the initial configuration C, at time 0, current
configuration €, at time ¢, and neighborhood con-
figuration C; at time ¢+ Af, respectively. The posi-
tion vectors of a particle P and the coordinates
describing the configuration of the body are, res-
pectively, ‘X and ‘X;, where left superscript (=0,
1, 2) refers to the configuration of the body and
right subscript (1, 2, 3) refers to the coordinate
axes. During the motion, the volume, the surface
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Configuration at time r+As
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Configuration at time 0

Figure 2.1. Motion of body in stationary Cartesian
coordinate system.

area, and the mass density of the body change
continuously. The specific mass, surface area, and
volume of the body in each configuration are de-
noted ,p, ‘A, and ‘V, respectively.

We consider that the solutions at times 0, Af,
2Af, -+, and ¢ are known, where Af is a time
increment. It is required to solve for the unknown
variable at time ¢+ At. Considering the equilib-
rium of the body in the configuration C,, the prin-
ciple of virtural displacements gives

58 W=0 2.1

where 82U and & *W are, respectively, the internal
and external virtual works in the configuration
at time {4+ At:

5=, 1ESSE) &V @2)
o=, G TaA+[, GwI BBV 23

In eqn (2.2), 2§ and 8E are, respectively, the se-
cond Piola-Kirchhoff stress tensor and the varia-
tion of Green-Lagrange strain tensor which are
measured in the configuration C, but referred to
the initial configuration and #(S 8iE) stands for
the frace of a second-order tensor (35S 82E) which
is a scalar invariant function of the tensor, having
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the same numerical value in all coordinate sys-
tems. In what follows, left superscripts indicate
the configuration at which the quantity is measu-
red whereas left subscripts indicate the relative
configuraton to which the quantity is referred. In
eqn (2.3), (8%u)" is the transpose of virtual displa-
cement vector and T and 2T and b are, respecti-
vely, the surface traction and body force vectors
which are applied in the configuration C; which
is in equilibrium state:

=T, + AT (2.4)
=2+ A% @25)

where 27T,, and 2, are, respectively, the surface
traction and body force vectors which are applied
initially in the current configuration but adjusted
by the changes of surface area, mass density, and
volume and applied in the configuration C; and
A’T and A% are, respectively, the incremental
surface traction and body force vectors which are
applied in the configuration C..

Considering the current configuration of the
body as a material and geometry reference frame,
the internal and external virtual works in the con-
figuration C, are given by

s20= |, iSSE a'V @2)

sow=, GRTTaA+ [, GuTpBEV @D
24 2y

where
1
%s=~2‘—;«%m-”g GF)T="0+ AlS @8)
%1:::5[@1' F—[=le+in 29)

In eqns (2.8) and (2.9), ' and %g are, respectively,
Cauchy stress tensors in the configurations C, and
C,, AJS is the incremental second Piola-Kirchhoff
stress tensor, [ is the identity tensor, and iF, %,
and % are, respectively, the deformation and li-
near and nonlinear parts of Green-Lagrange strain
tensor.

By the analogous procedures to the derivation
of the eqns (2.6) and (2.7), the internal and exter-



nal virtual works in the current configuration are
given. by

1
5=, oGS yB AV 210)

sW=| @ Taa+] G phdv eI

where ’p is the mass density in the configuration
at time ¢—Af, (8j4)" is the transpose of virtual
displacement vector in the current configuration
»3 and }E are, respectively, the second Piola-Kir-
chhoff stress and Green-Lagrange strain tensors
which are measured in the current configuration
but referred to the configuration at time ¢—Af,
and T and 'p are, respectively, the surface trac-
tion. and ‘body  force vector which are applied in
the current configuration.

Sirice the ‘deformation gradient tensor is, in ge-
neral, congid¢red as the same as the identity ten-
sor for small, increments, ie., }F=0X/#X~], the
ratio of mass densities -pp—and the second Piola-
Kirchhoff stress tensor ,.S become

1

P 1 o 2P g 1M ~T L

_.....a-_-_-,_“._.__._.zl’ S,__ 11 ~

=T L =D aGD g
2.12)

Also, the virtual displacement vector and the va-
riation of Green-Lagrangian tensor in the configu-
rations C, and C; maybe approximated by 8iu=~8}u
and BIE~GIE for small increments. Hence, consi-
dering the approximations, the internal, the inter-
nal and external virtual works are given by

8=, o8B aV @13)
v

& W= f G Tda+ f Gt BV 2.14)

Note that theCauchy stresses in eqn (2.13) are
physicdlly the same as the second Piola-Kirchhoff
stresses if the current configuration is uséd as
a reference frame.

Subtacting equns (2.13) and (2.14) from eqns
(2.6) and (2.7), respectively, and considering equns
(24), (2.5), and (2.8), the incremental internal and
external virtual works are obtained by

qAD)=8U-8U= le tr(AIS SiE) d'V  (2.15)

- 28—

BAW)=8 W8 W=, " CT.+ A4
-, G TdA+ [, 6o o

raD V- [ oty @16

Considering the external forces which ‘maintain
the same direction and magnitude, ie.,

Tnd?A="Td'A, A’TdA=ATd'A (2.172)

b dPV="p'0d"V, %p A% d®V="p Ab d'V(2.17b)

the incremental external virtual work, egn (2.16),
becomes

S(AW)':LA(G@)T ATd'A +f1v(57!)T 'pAbd'V
(2.18)

where AT and Ab are, respectively, incremental
surface and body force vectors which are applied
initially in the configuration C; but adjusted and
applied in the current configuration.

By equating eqns (2.15) with linear part of
Green-Lagrange strain and (2.18), equation for the
motion of a body is given by

[, maissoav=| Ghr AT
v A
+[ G abay @19)

where ARS='C% and ‘C is the updated constant
elasticity tensor relating small strain increments
to the corresponding stress increments.

3. Discrete formulation
For the isoparmetric element solution, the coor-
dinates and displacements in the current configu-

ration are, respectively, interpolated as

X,= £ Nt @D

= X Nyfu! 32)

where X% and fu; are, respectively, the coordinate
and the nodal displacement of nodalpoint &, N,
is the interpolation function corresponding to no-
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dal point &, and » is the number of element nodal
points,

Substituting the element coordinate and displa-
cement interpolations into eqn (2.19), we obtain,
for a single element

'Kiu=A'R (3.3)

where 'K and A'R are, respectively, the stiffness
matrix and the incremental element nodal force
vector, and fu is the element nodal displacement
vector in the configuration C; referred to the cur-
rent configuration. The basic integrals considered
and the corresponding matrix evaluations are ob-
tained by

MAD= [, r(CiesloaV (3.4a)

1]_( %q:(flv 1BT :C JB le) %L_t (3.4b)
SAW= [, G’ AT@'A+ |, G 'p AbaV
' (3.52)

AR= f N'ATdA+ f NipAbd'V  (35b)
14 1y

where 'B and N' are the linear strain-displace-
ment transformation matrix and the transpose of
displacement interpolation matrix, respectively,
and 'C is the updated constant elasticity tensor.
In the analysis of framed structures ‘E(egn 4.21)
is used as a part of ‘C, whereas in the analysis
of plane solids ‘£ and ‘v are used to form the
updated constant elasticity tensor ‘C in the cur-
rent configuration. Note that the elements of mat-
rices in egns (3.4b) and (3.5b) are functions of
the natural element coordinates and that the vo-
lume and area integrations are performed using
a coordinate change from Cartesian to natural
coordinates.

4. Material properties

An important aspect of the analysis for large
deformation is the proper characterization of ma-
terial properties. Since the second Piola-Kirchhoff
stress is not a physical quantity and the increment
of Cauchy stress does not satisfy objectivity requi-
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rement, existing large deformation algorithms ba-
sed on the use of initial configuration as a mate-
rial reference frame are known to have difficulties
in material modeling. By using. the current confi-
guration as a reference frame, material models
for ture stress-strain response can be conveniently
implemented even for structures subjected to very
large geometrical changes.

For the purpose of numerical verification, the
material constants based on current configuration
and those based on initial configuration must be
correlated. These can be obtained by considering
large deformation of a rod due to axial tension.

Consider a three dimensional rod subjected to
axial forces with length 9/ and cross sectional area
°A in the initial configuration, as shown in Figure
4.1(a). The deformation gradient and second Piola-
Kirchhoff stress tensors in the current configura-
tion are given by

1 — dox 'y 1
A F “.0)
WS=28+°C}E 4.2)
where
My 00 A 00
F=] 0 %A, 0 | ;E =1 0 },}\1 0
0 0 0 0 jx
4.3
1 G —1 0 0
JE= E) 0 Gr'—-1 0 44
0 0 Grr-1

In the above equations, jAi, jA2 and $A;, §A; are,
respectively, the components of the deformation
gradient tensor jF and 4F which are measured
in the configurations at time ¢ and {— At but refe-
rred to the configurations at time {—At¢ and 0,
respectively, and °C is the constant elasticity ten-
sor in the initial configuration. Since theCauchy
stresses in the current configuration may be exp-
ressed in terms of the second Piola-Kirchhoff st-
resses, along the principle axes they are given,
using indicial notation, by

1
loy=—(F) 1Sy, i=1, 2, 3 (45)
p



Figure 4.1. Three-dimensional rod element with its
local coordinates

where 1S; are the components of the second Piola-
Kirchhoff stress tensor:

35i=5S:+ ‘;‘[["Cﬁu[}}q)z —-1]
+(CCima+Cis)[GA*— 1] 4.6)

where °Ciyy, °Cigs, and °Cyzm are components of
the constant elasticity tensor °C.
Introducing the force condition and assuming

._w._

isotrophy in the current configuration, ie.,
1R= ‘011 1A, 10'23= ‘0&;30 (4.7)

the expression of the applied force in the current
configuration is obtained by

R= _O_E—GF”)Z (5Su+ %["le[@\-l)z =1]

+(Cuz+Cun){ (A — 1111 A 4.8)
where
oA
1% WA Y [ ... SO " I § -
(A —1 Comt*Corm vGhP—-1]1 49

In eqn (4.9), °v is the Poisson’s ratio in the initial
configuration.

By an analogous procedure to the derivation
of the eqns (4.8) and (4.9), the expression of the
applied force in the configuration C, is obtained
by

2
tR=l0y, A= —,—2—~<ﬁFu)2 [2Su+ %tacuu[@mz
— 1]+ (Crg+°Crz) Gy —11]]

det|FIGF) A (4.10)
where
Hh, 0 O % 0 O
EE=’_=‘_=[ 0 I, 0 ] [ 0 W 0 ]
0 0 % 0 0
e %Sm , _
@2r—-1 Com+"Cors Vit —1] @12)

Subtracting eqn (4.8) from eqn (4.10), the exp-
ression of the incremental applied force AR is
given by

2
AR= O—g‘GFu)z Wndet|iFIGF) 1A

—:,—2(31"11)2 PO | (4.13)
where
1Su=tSu + TELGAY — 11— 4¥Sa]
15, =180+ S EL@Y— 11~ #+Sa)
KA



In the above equation, °E is the Young's modulus
of elasticity inthe current configuration.

Now, based on the current configuration as the
material reference frame, the incremental second
Piola-Kirchhoff stresses 1S;, incremental Cauchy
stresses %05, and incremental applied force AR
may be found. Using the relationship of the se-
cond Piola-Kirchhoff stress and Cauchy stress, we
obtain the increment of Cauchy stresses along the
principle axes by

2
Afoi= 1%—(%F.~.-)2 AlS,, i=1, 2, 3 @.14)
where
AfSi='Cin = ‘;‘ [[*CinsPr— 1]
X (Cim+Cia)[GAF —1]] 4.15)

'Cin, 'Ciza, and ‘Cia3 in the above equation are
components of the constant elasticity tensor, ‘C,
of the current configuration.

Assume that the stress-strain relationships in
the current configuration is linear and isotropic,i.
€.

‘EQ—-*v)
§ = e = 4.16a
Cun A+ 1—2v) Cozze="'Caanz )
¢,
Cun= _V,v 'Coun="'Cun="'Cos Symmetric

(4.16b)

Since the incremental Cauchy stresses are zero
along the lateral principle axes, with the substitu-
tion of the relationships given in eqn (4.16) into
eqn (4.14) an solving for v, we have

R S 0
= )

1 @4.17)

where 'v is the updated Poisson's ratio in the cur-
rent configuration. We also evaluate the increme-
ntal applied force AR by

2
AR=Alon’A= ‘;‘ 'l—z”‘GFu)z['le[GM)z —-1]

+(Cruz+'Cun)Gr)*—11]

det|3F|GF) ! A (4.18)
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Substituting the relation

% 1 _ 1
! Y

o detlTF] 419

and the stress-strain relationships given in egn
(4.16) into eqn (4.18), we have

Y

= oEny ‘ELGM),— 1] det|3FIGFn) 1 'A (4.20)

where 'E is the updated Young’s modulus of elasi-
ticity in the current configuration.

By equating eqns (4.13) and (4.20) and solving
for 'E, we have

2

IE —— T
Ly -1

‘p
[<Eerrisn

IL_ (cl;Fu)_z 1 ] @21)

°0  detlTFIGF) "
5. Numerical Examples

To validate the presented formulation and de-
monstrate the importance of imposing material
properties properly, four examples are given.

For the analysis of framed structures, the ele-
ment equations are formulated in the body atta-
ched coordinate as shown in Figure 5.1 and then
transformed to the global coordinate. The axes
of the frame member are assumed to be the linear
interpolation for the axial displacement and cubic
interpolation for bending displacement in the body
attached coordinates. The axial and bending disp-
lacements of the frame element along the body
attached coordinates in the configuration at time
¢t are given by

tu=Nnw, V=N (GRY

where N, and N, are, respectively, the vectors of
interpolation functions for a rod and a beam ele-
ment with two nodes and 3%, and 1, are, respecti-
vely, the vectors of axial and bending displaceme-
nts:

N,=[Nn N1, Ny=[Nyi Niz Nyz Nos]" 5.2)
=l u.]", = v éz ;’z éij 6.3)



» X,

Figure 5.1. Frame element with body attached
coordinates in the configuration at
time t.

X

Configuration at time ¢

- X fue

Figure 5.2. Four-node plane solid element in the
corfiguration at time t.

In eqn (5.2), the interpolation functions for a rod
and 2 heam element are given by
% %
=1--2% | Np=—= 5.4a
Nﬂ 1 L , N,e L ( )

No=35L2050 - 3L L),

No=—5 LR~ 2050 + 5 L7,

-32—

Nba

%3’{ — (P43,

Nu=—LR0L - 250D 5.45)
where ! is the length of frame element in the
configuration at time f. In eqn (53), #;, v, and
8, (=1, 2), are, respectively, the axial nodal disp-
lacements, the bending nodal displacements, and
nodal rotations at nodes i. Since for the frame
element the only stress is the normal stress on
its cross-sectional area, we only consider the cor-
responding longitudinal strain. The normal strain
for any point of the cross section of the member
in the configuration at time ¢ is written as

o a s dlu 43V
=¢,te= x- =
eeTaTTNR, d0X,)?

(5.5)

where ¢, and e, are, respectively, the axial and
bénding strain in the body attached coérdinate
system and ¢ is the distance from the axis of cent-
roid to the measured point on the cross section.

For the analysis of plane solids, a four-node
plane stress element as shown in Figure 52 is
considered. The coordinate of the four-node plane
stress element in the configuration at time f are
determined by

X,= kél N.X%, X,= kél N, IXlz' (5.6)

where the interpolation functions Ni(r, s) are gi-
ven by

N= i—(l—r)(l ~$), Np= %(1 +7r)1—s)

N3=~i—(1+r)(1+s), N4=—1—(1—r)(1+s)
Since we use isoparametric finite élement disere-
tization, the element displstements ave interpola-
ted in the same way as the géometry, i.e.

o= £ Nt o= £ Nt 58)

where %, (k=1, 2, 3, 4, i=1, 2), are the nodal
displacements along the directions ¢ in the confi-
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guration at time f. The element stiffness matrix
in the configuration at time ¢ is now constructed
by evaluating the strain-displacement matrix 'B.
By considering the linear part of Green-Lagrange
strain tensor % (eqn 2.9), the B is evaluated
from

e='Biu

(5.9)

where fu is the element nodal displacement vec-
tor.

Since 'B matrix is a function of » and s in the
isoparametric finite element formulation, we must
integrate the equations of the element stiffness
matrix 'K (eqn 3.4b) with respect to ¥ and s. Using
the general type of transformation of variables and
regions from Cartesian to natural coordinates, the
equation for the element stiffness matrix of plane
solid with thickness ¢ is written by

1 1
K= f j 1BT(C B |J|t dr ds
-1

-1

(5.10)

where |J| is the determinant of Jacobian J. For
the evaluation of X in eqn (5.10), numerical inte-
gration scheme with four-point Gaussian quadra-
ture is employed.

5.1 Cantilever beam with end forces

The large deformation behaviors of a cantilever
beam with end forces shown in Figures 5.3 is stu-
died. To this end, two loading conditions are con-

Py
, "
ﬂ Al"“""’u
Y
J
le
N L |
L=10m
h=01lm
b=1lm
*E = 12 KNimm?
v = 00

Figure 5.3. Cantilever beam with concentrated end
forces.
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sidered: case one considered a vertical non-conse-
rvative force P, of 8 KN and case two considered
a horizontal force P, of 30000 KN. The beam is
modeled by five equal elements. The results are
shown in Figure 54 and 5.5.

Figure 54 shows good agreement between the
solutions of the present study and Reference™®
and shows that the explicit solutions are very sta-
ble and converges rapidly as the number of incre-
ment loading steps increase. However, the solu-
tion obtained by ANSYS with tolerance of |0.01]
and incremental load of 0.25 KN failed to yield
converged results at F=3.25 KN. Converged re-
sults by ANSYS are only plotted in this Figure.

In Figure 5.5, the results are compared to those
by ANSYS. Incidentally, the result by ANSYS with
large displacement analysis is the same as the
result by linear analysis for the second loading
case. In a practical sense, since the stiffness of
beam element becomes softer when it is elonga-
ted, the axial displacement should be larger in
large deformation analysis than in linear analysis,
if the same material properties and the same are
used. Another plots using 'E is alos shown for
a comparison. From the Figure, we see that stiff-
ness of the cantilever beam becomes bigger as
the beam becomes elongated.

8 o —

l

* ANSYS, 12 steps with 125 iter.
+ Reference {16)
~4— Present, °E, 40 sieps
6 —w- Present, *E, 120 steps

5 ~&~ Present, *E, 360 steps
Ay
]
©
s
3
& -
g LY
v . \
-

2’-— ¥ FJ

)
0 L 1 I 1

2 4 6 ] 10
Displacement (m)

Figure 5.4. Horizontal and vertical displacements

of a cantilever beam with a concentra-

ted load A,
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Figure 5.5. Horizontal displacement of a cantilever
beam subjected to a concentrated load
P,.

5.2 Cantilever beam with an end moment

A cantilever beam subjected to a concentrated
moment M at the free énd as shown in Figure
5.6 is considered. This beam is modeled by twelve
equal elements. The results are shown in Figures
57 ahd 58.

Figure 5.7 shows the plot of normalized displa-
cements versus load factor f for the tip of the
beam; results are compared with those of Refere-
nce [17]. In Reference[17]. total Lagrangian app-
roach with incremental iterations is used to han-
dle geometrically nonlinear three dimensional
beam problems. The results show that the predic-
ted response compares well with those of refere-
nce [17].

Figure 5.8 shows the deformed shapes of the
cantilever beam obtained by the presented me-
thod for the maximum load of f=1.8 with 90 inc-
remental load steps and f=3.6 with 180 incremen-
tal load steps. From the deformed shapes of the
beam, we may see the differences of the results
by °E and ‘E and the capabilities of handling large
displacement and large rotation problems.

5.3 Diamond-shaped frame
A diamond-shaped frame composed of four

—34—
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v = 00

Figure 5.6. Cantilever beam with an end moment.
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0 o3 08 08 13 13
Load Factor (f =ML/nEI)
Figure 5.7. Load-displacement curves of a cantile-
ver beam sugjected to an end moment
M.

equal bars and loaded by forces applied at a pair
of diagonally opposite joints as shown in Figure
5.9 is analyzed. The two loaded joints are assumed
to be hinged while the two free joints are assu-
med to be rigid. A quarter of the frame is mode-
led by ten equal elements. The results are shown
in Figures 5.10 an 5.11.

Figures 5.10 and 5.11 show the plot of normali-
zed displacements versus load factors under ten-
sile and compressive loadings. Resuits are compa-
red with those of Reference [18] where analytical
solutions with experimental results for this frame
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Figure 5.9. Diamond-shaped frame structure.

are provided. The solutions from the figures show
excellent agreement with theory[18].

5.4 Plane solid subjected to concentrated no-

dal forces

The plane solid which is composed of 15 equal-
size elements and subjected to four equal concen-
trated forces with fixed ends shown in Figure 5.12
is considered. The problem has also been solved
by using ANSYS. ANSYS failed to yield converged
results at F=820(b) with a large tolerance of |0.
01/. Using the simple incremental procedure with
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of a pinned-fixed frame under comp-
ressive loading.

increment force of AF=>50(/b), the solutions by
ANSYS became very unstable at F=1550(b). The
present algorithm appears to have no such limit.
Figures 5.13 and 5.14 show the comparisons of
the load-displacement relationships. From the fi-
gures, we see that the solutions are very stable
and the algorithm has the capability of following
very large deformations of the structure.
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6. Conclusion

The objective of this paper was to develop a
nonlinear finite element formulation which has the
capability of handling very large geometrical cha-
nges.. The formulation was based on-an updated
material reference frame and hence true stress-
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Figure 5.14. Vertical displacement of node A of
plane solid subjected to horizontal
loads.

strain test can be directly applied to properly cha-
racterize properties of materials which are subjec-
ted to very large deformation. For the large defor-
mation, a consistent formulation based on the co-
ntinuum mechanics approach has been derived.
The kinematics has been referred to an updated
material frame. Body equilibrium has also been
established in an updated geometry and the se-
cond Piola-Kirchhoff stress and the updated Lag-
rangian strain tensor have been used in the for-
mulation.

From the example considered, we see that the
present formulation has the capability of handling
very large geometrical changes. In addition the
algorithm, incremental numerical procedure deve-
loped here, has shown to be very stable and con-
verges rapidly when small load or deformation
increments are used. The importance of using
proper material properties has been demonstrated
from the differences of results.
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