• Title/Summary/Keyword: 유한요소이론

Search Result 956, Processing Time 0.024 seconds

Hybrid Stress Analysis around a Circular Hole in a Tensile Plate by Use of Phase Shifting Photoelasticity (광탄성 위상이동법에 의한 인장시편 원형 구멍주위 하이브리드 응력해석)

  • Baek, Tae-Hyun;Lee, Choon-Tae;Yang, Min-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2007
  • A hybrid experimental-numerical method is presented for determining the stresses around a circular hole in a finite-width, tensile loaded plate. Measured fringe orders along straight lines provided the input information on the external boundary of the hybrid element. In order to see the effects of varying stress field, different numbers of terms in a power-series representation of the complex type conformal mapping stress function were tested. For qualitative comparison, actual isochromatic fringes were compared with reconstructed theoretical fringes using stress-optic law. For quantitative comparison, relative errors and standard deviations with respective to relative errors were analyzed for all measured points by changing the number of terms of stress function. The hybrid results are highly comparable with those predicted by FEA. The results show that this approach is effective and promising because isochromatic data along the straight lines in photoelasticity can be conveniently measured by use of phase shifting photoelasticity.

Nondestructive Damage Detection in PSC Beams : Frequency-Based Method Versus Mode-Shape-Based Method (고유진동수 이용 손상추정법과 모드형상 이용 손상추정법에 의한 PSC 보의 비파괴 손상검색)

  • 김정태;류연선;조현만
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.43-58
    • /
    • 2002
  • A methodology to nondestructively locate and estimate size of damage in beam-type structures using a few natural frequencies or a few mode shapes is presented. A damage-localization algorithm to locate damage from changes in natural frequencies and a damage-sizing algorithm to estimate crack-size from natural frequency perturbation are outlined. A damage index algorithm to localize and estimate severity of damage from monitoring changes in mode shapes is outlined. The frequency-based method and the mode-shape-based method are evaluated for several damage scenarios by locating and sizing damage in PS concrete beams lot which a few natural frequencies and mode shapes are generated from finite element models. The result of the analyses indicates that the two methods correctly localize and closely estimate the size of the crack simulated in the test beam.

Design of a FRP Deck Using Topology and Shape Optimization (위상과 형상최적화 기법을 사용한 FRP 교량 바닥판의 설계)

  • Lee, Eun-Hyung;Park, Jae-Gyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.501-507
    • /
    • 2009
  • By using topology and shape optimization, a theoretically optimum FRP deck was proposed. Firstly, a topologically optimal shape, truss-like structure without hinges, was found. A truss-shape frame is the most ideal structure when subjected to a concentrated force at the center of simply supported beam. An armature was found at the point joining horizontal chord and diagonal chord, which was used as a new design variable. Secondly, optimum value of each variable was decided through shape optimization using genetic algorithm. To compare it with existing commercial FRP decks, shape optimization was performed by fixing the height of FRP decks. To verify the performance of the FRP deck proposed in this study, a finite element analysis was performed. As a result, it satisfies serviceability and safety guide lines of FRP decks.

A Study on Automation of Steel Plate Forming by Heating Method (열간가공에 의한 강판의 곡 가공 자동화 시스템)

  • B.I. Lee;H.S. Yoo;G.G. Byun;H.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.34-44
    • /
    • 2002
  • Approximately 70 percent of shop's hull plate consists of three-dimensional curved shell. Concerning with the research on the automation of plate forming many studies have been carried out for the last decade. The purpose of this study is to develop the simulator of heating on the basis of the reasonable mechanical model representing a heating phenomenon. The beating experiment has been carried out with varying parameters influencing on the results of heating information at the kinematics analysis, simulatorestimate the shape of deformed plate that process along the processing information. When we get the initial shape and the object shape, we calculate the processing information first, using kinematics analysis. In a simulator we estimate deformed shape from the processing information. After this we compare deformed shape and object shape. If the error of deformed shape and object shape is in the proper limits, that information is determined the final processing information. Else we repeat the process changing variable.

Dynamic Analysis of Steel Jackets under Wave and Earthquake Loadings I : Linear and Non-linear F. E. Formulation (파랑 및 지진하중을 받는 스틸자켓의 동적해석 I : 선형 및 비선형 유한요소 정식화)

  • 김문영;백인열;고진석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.5
    • /
    • pp.1-11
    • /
    • 2001
  • The purpose of this study is to develop the main program and pre/post processor for the geometric and plastic non-linear analysis of steel jacket structures subjected to wave and earthquake loadings. In this paper, steel jackets are modelled using geometric non-linear space frames and wave loadings re evaluated based on Morrison equation using the linear Airy theory and the fifth Stokes theory. Random wave is generated using JONSWAP spectrum. For earthquake analysis, dynamic analysis is performed using artificial earthquake time history. Also the plastic hinge method is presented for limit analysis of steel jacket. In the companion paper, the pre/post processor is developed and the numerical examples are presented for linear and non-linear dynamic analysis of steel jackets.

  • PDF

Structural Performance Evaluation for Composite Beam Member of Hybrid Modules Frame with Steel-Precast Concrete (강-PC 복합모듈러 골조의 합성보에 대한 구조성능 평가)

  • Lee, Sang Sup;Park, Keum Sung;Bae, Kyu Woong;Choi, Yoon Chul
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.331-340
    • /
    • 2017
  • This study was performed in order to develop of the new modular construction system. For the modular construction method that is currently applied in the country, it is very expensive in terms of material costs and fire resistance because it uses only the steel C-type beam. In order to overcome this, and the practical application of new steel-PC hybrid module construction system. Improvement and development of the cross-section of the structural beam member in order to be carried out first. An experiment was carried out by making three specimens. Experiment result, the composite beam was dominated by the horizontal shear failure. It was evaluated through a nonlinear analysis and experimental & theoretical for the structural performance the composite beam member.

Dynamic Response for Critical Velocity Effect Depending on Supporting Stiffness of High-Speed Railway Trackbed (고속철도 노반지지조건에 따른 임계속도효과의 동적응답)

  • Lee, Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.5-12
    • /
    • 2013
  • The critical velocity effect on railway trackbed means the amplification of vibration energy when the train running-speed and group velocity of ground surface wave are superimposed. It is called a pseudo-resonance phenomenon of time domain. In the past, it was not issued because the train speed was low and the ground group velocity was higher. But since the high-speed train is introduced, critical velocity reported causing a track irregularity. So far, theoretical analysis has been performed because of the complexity of formation process. However it requires reasonable consideration which is similar to actual track and trackbed conditions. In the present paper, finite element analysis to verify the critical velocity effect is performed considering each track structure and trackbed supporting stiffness. As a result, the deformation amplification caused by the critical velocity effect is verified to analyze each supporting stiffness and track system.

Analysis of Filling and Stresses in the Hot Forging Process Depending on Flange Die Shapes (열간단조 플랜지 금형의 형상에 따른 충전 및 응력해석)

  • Kim, Jun-Hyoung;Kim, Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.423-430
    • /
    • 2010
  • Hot closed-forging process and the die used for forming an automotive flange were analyzed from the viewpoints of heat transfer, grain-flow lines, and stresses to obtain a forged product without defects such as surface cracks, laps, cold shots, and partial filling. The forging process including up-set, pre-forging, final forging and pressing forces was investigated using finite element analysis. The influence of the preform die and the ratio of the heights of the upper die to lower die on the forging process and die were investigated and a die shape ($10^{\circ}$ for the preform die, and 1.5:1 ratio for the final die) suitable to achieve successful forging was determined on the basis of a parametric study. All parametric design requirements such as strength, full filling, and a load limit of 13,000 KN were satisfied for this newly developed flange die. New dies and flanges were fabricated and investigated. Defects such as partial filling and surface cracks were not observed.

Forming of Dome and Inlet Parts of a High Pressure CNG Vessel by the Hot Spinning Process (열간 스피닝 공정을 통한 CNG 고압용기의 돔 및 입구 부 성형)

  • Lee, Kwang O;Park, Gun Young;Kwak, Hyo Seo;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.887-894
    • /
    • 2016
  • The CNG pressure vessel is manufactured by a deep drawing and ironing (D.D.I) process for forming cylinder parts, followed by a spinning process for formation of the dome part. However, studies on the buckling phenomenon of the dome part and formation of the inlet part have not been performed yet, and the CNG pressure vessel is produced by the experience of the field engineers and the trial and error method. In this study, buckling phenomenon during the spinning process was predicted by comparing critical buckling loads obtained through theoretical analysis with axial loads from the FEA, and a method for preventing buckling of the dome part was proposed by employing commercial software (Forge NxT 1.0.2). Also, to form the inlet part, forming loads of the roller at contact point between the roller and the dome part were analyzed according to radii of the dome part, and the inlet part was formed by controlling the radius of the dome part.

Design of Bottom Shape and Forming Analysis of Hydrogen Pressure Vessel with Maximum Volume (최대 내용적을 갖는 수소압력용기의 형상설계 및 성형해석)

  • Park, Gun Young;Kwak, Hyo Seo;Lee, Kwang O;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.941-948
    • /
    • 2017
  • Recently, hydrogen energy has been in the spotlight as an alternative to diminishing fossil fuels and as a potential solution to environmental pollution. The development of hydrogen-fueled vehicles and the demands for improved fuel efficiencies have resulted in the need to increase the volume of the hydrogen pressure vessels. Pressure vessels having an elliptical bottom, as opposed to one that is hemispherical, allow for a greater capacity. However, there are insufficient studies on the feasibility of the forming process required for an elliptical bottom. In this study, the liner capacity is calculated according to the ratios of the major to the minor axes of the elliptical bottom part in a hydrogen pressure vessel. Structural safety is verified through finite element analyses, and the results are compared to the theoretical results. The feasibility of the proposed elliptical shape of the pressure vessel bottom, while filled to maximum capacity, is validated through forming analysis.