Browse > Article
http://dx.doi.org/10.3795/KSME-A.2016.40.10.887

Forming of Dome and Inlet Parts of a High Pressure CNG Vessel by the Hot Spinning Process  

Lee, Kwang O (Research Institute of Mechanical Technology, Pusan Nat'l Univ.)
Park, Gun Young (Research Institute of Mechanical Technology, Pusan Nat'l Univ.)
Kwak, Hyo Seo (Dept. of Mechanical Convergence Technology, Pusan Nat'l Univ.)
Kim, Chul (Research Institute of Mechanical Technology, Pusan Nat'l Univ.)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.40, no.10, 2016 , pp. 887-894 More about this Journal
Abstract
The CNG pressure vessel is manufactured by a deep drawing and ironing (D.D.I) process for forming cylinder parts, followed by a spinning process for formation of the dome part. However, studies on the buckling phenomenon of the dome part and formation of the inlet part have not been performed yet, and the CNG pressure vessel is produced by the experience of the field engineers and the trial and error method. In this study, buckling phenomenon during the spinning process was predicted by comparing critical buckling loads obtained through theoretical analysis with axial loads from the FEA, and a method for preventing buckling of the dome part was proposed by employing commercial software (Forge NxT 1.0.2). Also, to form the inlet part, forming loads of the roller at contact point between the roller and the dome part were analyzed according to radii of the dome part, and the inlet part was formed by controlling the radius of the dome part.
Keywords
Pressure Vessel; Spinning; Buckling; Roller Feeding Distance; Dome Part; Inlet Part; Radius of Dome Part;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kang, M. C., Lee, H. W. and Kim, C., 2011, "Optimal Design Considering Structural Efficiency of Compressed Natural Gas Fuel Storage Vessels for Automobiles," Transactions of Nonferrous Metals Society of China, Vol. 21, pp. 199-204.   DOI
2 Kim, C. H., Park, J. H., Kim, C. and Choi, J. C., 2004, "Expert System for Process Planning of Pressure Vessel Fabrication by Deep Drawing and Ironing," Journal of Materials Processing Technology Vol. 155-156, pp. 1465-1473.   DOI
3 Bae, J. H., Lee, H. W., Kim, M. S. and Kim, C., 2012, "Optimal Design for CNG Composite Vessel Using Coupled Model with Liner and Composite Layer," Journal of the Korean Society for Precision Engineering Vol. 29, No. 9, pp. 1012-1019.   DOI
4 Kim, H., Bae, W., Jang, Y. and Kim, C., 2008, "Optimal Design of the Fuel Storage Vessel of CNG Automobile by Considering Structural Efficiency," Trans. Korean Soc. Mech. Eng. A, Vol. 32, No. 6, pp. 465-473.   DOI
5 Kim, J.-H., Kim, E.-S. Kim, C. and Choi, J.-C., 2003, "Development of an Automated Design System of a Large Pressure using the Steel, 34CrMo4," Journal of Korean Society of Precision Engineering, Vol. 20, No. 8, pp. 21-29.
6 Bae, J. H., Lee, H. W., Kim, M. S. and Kim, C., 2013 "Optimal Process Planning of CNG Pressure Vessel by Ensuring Reliability and Improving Die Life," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No.7, pp. 865-873.   DOI
7 Lee, H. W., Jung, S. Y. and Kim, C., 2013, "Study of Hot Spinning Process for Head of CNG Storage Vessel," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 4, pp. 547-554.   DOI
8 Zoghi, H. and Sayeaftabi, M., 2013, "Enhanced Finite Element Analysis of Material Deformation and Strain Distribution in Spinning of 42CrMo Steel Tubes at Elevated Temperature," Materials & Design, Vol. 47, pp. 234-242.   DOI
9 Zoghi, H., Arezoodar, A. F. and Sayeaftabi, M., 2012, "Effect of Feed and Roller Contact Start Point on Strain and Residual Stress Distribution in Dome Forming of Steel Tube by Spinning at an Elevated Temperature," Journal of ENGINEERING MANUFACTURE, Vol. 226, No. 11, pp. 1880-1890.   DOI
10 Akkus, N. and Kawahara, M., 2006, "An Experimental and Analytical Study on Dome Forming of Seamless Al Tube by Spinning Process," Journal of Materials Processing Technology, Vol. 173, No. 2, pp. 145-150.   DOI
11 Gere, J. M. and Goodno, B., 2011, Mechanics of materials 7th, McGraw-Hill, NewYork.