DOI QR코드

DOI QR Code

Design of Bottom Shape and Forming Analysis of Hydrogen Pressure Vessel with Maximum Volume

최대 내용적을 갖는 수소압력용기의 형상설계 및 성형해석

  • Park, Gun Young (Mechanical Convergence Technology, Pusan Nat'l Univ.) ;
  • Kwak, Hyo Seo (Research Institute of Mechanical Technology, Pusan Nat'l Univ.) ;
  • Lee, Kwang O (Research Institute of Mechanical Technology, Pusan Nat'l Univ.) ;
  • Kim, Chul (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • 박건영 (부산대학교 기계융합기술전공) ;
  • 곽효서 (부산대학교 기계기술연구원) ;
  • 이광오 (부산대학교 기계기술연구원) ;
  • 김철 (부산대학교 기계공학부)
  • Received : 2017.05.12
  • Accepted : 2017.07.10
  • Published : 2017.10.01

Abstract

Recently, hydrogen energy has been in the spotlight as an alternative to diminishing fossil fuels and as a potential solution to environmental pollution. The development of hydrogen-fueled vehicles and the demands for improved fuel efficiencies have resulted in the need to increase the volume of the hydrogen pressure vessels. Pressure vessels having an elliptical bottom, as opposed to one that is hemispherical, allow for a greater capacity. However, there are insufficient studies on the feasibility of the forming process required for an elliptical bottom. In this study, the liner capacity is calculated according to the ratios of the major to the minor axes of the elliptical bottom part in a hydrogen pressure vessel. Structural safety is verified through finite element analyses, and the results are compared to the theoretical results. The feasibility of the proposed elliptical shape of the pressure vessel bottom, while filled to maximum capacity, is validated through forming analysis.

최근 화석연료 고갈 및 환경오염 문제를 해결할 수 있는 대안으로 수소에너지가 주목받고 있으며, 고효율 및 주행거리 향상을 위한 수소 자동차 개발에 따라 수소 저장 압력용기의 내용적 증가 및 구조안전성이 요구되고 있다. 그러나, 반구형의 바닥부보다 내용적이 큰 타원형 바닥부의 형상설계가 이루어지지 않았으며, 타원형 바닥부의 성형공정에 관한 연구 또한 미비한 실정이다. 이에 본 연구에서는 수소압력용기 라이너의 타원형 바닥부 장단축비에 따른 최대 내용적을 계산하고 유한요소해석을 통한 구조안전성 검증 및 이에 대한 이론적 고찰을 검토하였다. 또한, 바닥부 성형 공정해석을 통하여 제안된 최대 내용적을 갖는 타원형상의 성형 가능성을 확보하였다.

Keywords

References

  1. Han, W. H., Choi, J. s. and Choi J. H., 2010, "The Trends of Hydrogen Energy Technology Development and Application to Ship," Journal of the Korean Society of Marine Environment & Safety, Vol. 16, No. 3, pp. 313-320.
  2. Lee, J.H., Yoo, G.H. and Heo, S.B., 2004, "High Pressure Hydrogen Gas Cylinder for Fuel Cell Vehicle and Station," Theories and Applications of chem. Eng., Vol. 10, No. 1.
  3. Choi, J. C., Jung, S.Y. and Kim, C., 2004, "Development of an Automated Design System of a CNG Composite Vessel Using a Steel Liner Manufactured Using the DDI Process," The International Journal of Advanced Manufacturing Technology, Vol. 24, No. 11, pp. 781-788. https://doi.org/10.1007/s00170-003-1798-4
  4. Lian, C. C., Chen, H. W. and Wang, C. H., 2002, "Optimum Design of Dome Contour for Filament-wound Composite Pressure Vessels Based on a Shape Factor," Composite Structures, Vol. 58, No. 4, pp. 469-482. https://doi.org/10.1016/S0263-8223(02)00136-8
  5. Zhou, J., Chen, J., Zheng, Y, Wang, Z. and An, Q., 2016, "Dome Shape Optimization of Filamentwound Composite Pressure Vessels Based on Hyperelliptic Functions Considering Both Geodesic and Non-geodesic Winding Patterns," Journal of Composite Materials, Online Published November 13, DOI: 10.1177/0021998316662512.
  6. Sharifi, S., Gohari, S., Sharifiteshnize, M., Vrcelj, Z., 2016, "Numerical and Experimental Study on Mechanical Strength of Internally Pressurized Laminated Woven Composite Shells Incorporated with Surface-bounded Sensors," Composites Part B: Engineering, Vol. 94, No. 1, pp. 224-237. https://doi.org/10.1016/j.compositesb.2016.03.020
  7. Zheng, K., Lee, J., Lin, J., Dean, T. A., 2017 "A Buckling Model for Flange Wrinkling in Hot Deep Drawing Aluminium Alloys with Macro-textured Tool Surfaces," International Journal of Machine Tools & Manufacture, Vol. 114, pp. 21-34. https://doi.org/10.1016/j.ijmachtools.2016.12.008
  8. Zheng, K., Politis, D.J., Lin, J., Dean, T.A., 2016, "A Study on the Buckling Behaviour of Aluminium Alloy Sheet in Deep Drawing with Macro-textured Blankholder," International Journal of Mechanical Sciences, Vol. 110, pp. 138-150. https://doi.org/10.1016/j.ijmecsci.2016.03.011
  9. Bae, J. H., Lee, H. W. and Kim, C., 2014, "A Study on Integrated Design for Manufacturing Processes of a Compressed Natural Gas Composite Vessel," International Journal of Precision Engineering and Manufacturing, Vol. 15, No. 7, pp. 1311-1321. https://doi.org/10.1007/s12541-014-0471-1
  10. Lee, K.O., Sim, H.D., Kwak, H.S. and Kim, C., 2016, "Optimal Design of Tractrix Die Used in D.D.I. Process for Manufacturing CNG Pressure Vessel," Trans. Korean Soc. Mech. Eng. A, Vol. 40, No. 10, pp. 879-886. https://doi.org/10.3795/KSME-A.2016.40.10.879
  11. John F. Harvey, 1974, Theory and Design of Modern Pressure vessels, New York van Nostrand. pp. 41-47.
  12. ASME Boiler and Pressure Vessel Code, Section VIII Division I.