DOI QR코드

DOI QR Code

열간단조 플랜지 금형의 형상에 따른 충전 및 응력해석

Analysis of Filling and Stresses in the Hot Forging Process Depending on Flange Die Shapes

  • 김준형 (경북대학교 기계공학부) ;
  • 김철 (경북대학교 기계공학부)
  • Kim, Jun-Hyoung (Dept. of Mechanical Engineering, Kyungpook Nat'l Univ.) ;
  • Kim, Cheol (Dept. of Mechanical Engineering, Kyungpook Nat'l Univ.)
  • 발행 : 2010.04.01

초록

표면의 균열, 겹침결함, 금형의 코너반경이 작아 재료의 유동성이 낮을 때 발생하는 콜드셧, 부분충진등의 단조결함이 없는 자동차용 단조 플랜지를 생산하기 위해서 열전달, 단류선 흐름, 응력분포를 고려하여 형단조 공정과 금형에 대한 해석을 수행하였다. 축박기(up-set) 단조, 예비성형, 최종성형, 단조압력으로 구성된 단조과정은 유한요소법으로 해석되었다. 예비성형과 상하 금형의 높이비율이 단조공정과 금형에 미치는 영향을 평가하여 예비금형의 각 $10^{\circ}$와 최종 금형의 상하비율 1.5:1이 단조결함이 없는 결과를 나타내었다. 이를 반영한 새로 설계된 금형은 재료강도, 완전충진, 하중한계 13,000 KN 이라는 공정변수를 모두 만족시켰다. 이론 입증을 위해서 개선된 금형과 플랜지가 제작되었으며, 단조결함이 발견되지 않았다.

Hot closed-forging process and the die used for forming an automotive flange were analyzed from the viewpoints of heat transfer, grain-flow lines, and stresses to obtain a forged product without defects such as surface cracks, laps, cold shots, and partial filling. The forging process including up-set, pre-forging, final forging and pressing forces was investigated using finite element analysis. The influence of the preform die and the ratio of the heights of the upper die to lower die on the forging process and die were investigated and a die shape ($10^{\circ}$ for the preform die, and 1.5:1 ratio for the final die) suitable to achieve successful forging was determined on the basis of a parametric study. All parametric design requirements such as strength, full filling, and a load limit of 13,000 KN were satisfied for this newly developed flange die. New dies and flanges were fabricated and investigated. Defects such as partial filling and surface cracks were not observed.

키워드

참고문헌

  1. Petrov, P., Perfilov, V. and Sebunov, S., 2006, "Prevention of Lap Formation in near Net Shape Isothermal Forging Technology of Part of Irregular Shape Made of Aluminium Alloy A92618," Journal of Materials Processing Technology, Vol. 177, No. 1-3, pp. 218-223. https://doi.org/10.1016/j.jmatprotec.2006.03.206
  2. Cho, H. Y., Kim, Y. T., Kim, K. W. and Kim, W. J., 2008, "Finite Element Analysis for Multi -stage Forging Process Design of Bolt with Nonaxisymmetric Washer Cam," Journal of the Korean Society of Marine Engineering, Vol. 32, No. 4, pp. 585-595. https://doi.org/10.5916/jkosme.2008.32.4.585
  3. Yeom, S. H., Nam, K. O., Hwang, D. S., Kwon, H. S. and Hong, S. I., 2006, "A Study on the Process Development of Mono Steel Forged Piston for Diesel Engine," Trans. of KSAE, Vol. 14, No. 3, pp. 44-50.
  4. Monaghan, J., 2001, "A Finite Element Analysis of Cold-Forging Dies Using Two and Three Dimensional Models," Journal of Materials Processing Technology, Vol. 118, No. 1-3, pp. 286-292. https://doi.org/10.1016/S0924-0136(01)00960-8
  5. Biswas, S. K. and Rao, K. V. J., 1985, "Flow of Metal into the Flash Gap in the Last Stages of a Plane-strain Closed-die Forging Operation," Journal of Mechanical Working Technology, Vol. 11, No. 3, pp. 319-331. https://doi.org/10.1016/0378-3804(85)90004-X
  6. Kim, H. Y., Kim, J. J. and Kim N. S., 1993, "An Analysis of Hot Closed-die Forging to Reduce Forging Load and Die Wear," Proc. of the KSME Spring Annual Meeting (1), pp.839-844.
  7. Joun, M. S., Hwang, S. M. and Moon, H. G., 1995, "Automatic Computer Simulation of Multi -stage Hot Forging Processes Flow, Temperature and Die Analyses," Proc. of the KSME Spring Annual Meeting (1), pp. 337-340.
  8. Lee, S. R., Lee, Y. G., Park, C. H. and Yang, D. Y., 2000, "Optimal Design of Preform in Hot Forging," Proc. of the KSME Spring Annual Meeting (A) pp. 780-785.
  9. Park, J. G., Park, J. H., Choi, S. G., Na, K. H. and Kim, Y. S., 2006, "Application of FE Analysis for Optimal Design of Caulking Process," Journal of Materials Processing Technology, Vol. 15, No. 3, pp. 257-279.
  10. Park, J. G., Hwang, H. S., Lee, S. J., Hong, S. C., Lim, S. H., Lee, K. S. and Lee, K. J., 2003, "FE Analysis of Hot Forging Process and Microstructure Prediction for Lower Arm Connector," Trans. of the KSME (A), Vol. 27, No. 7, pp. 1243-1250. https://doi.org/10.3795/KSME-A.2003.27.7.1243
  11. Byun, H. S., Kim, B. M. and Ko, D. C., 2005, "A Study on Transfer Process Design on Hot Forging of Bearing Hub," Proc. of KSPE Autumn Annual Meeting (1), pp. 999-1002.
  12. Kim, Y. S., Yang, S. H., Shan, D., Choi, S. O., Lee, S. M. and You, B. S., 2006, "Three-Dimensional Rigid-Plastic FEM Simulation of Metal Forming Process," Journal of Materials Engineering and Performance, Vol. 15, No. 3, pp. 275-279. https://doi.org/10.1361/105994906X108738
  13. Incropera, F. P. and Dewitt, D. P., 2002, Fundamentals of Heat and Mass Transfer, 5th Ed., John Wiley and Sons, N.J., p. 8.
  14. http://www.matweb.com/