DOI QR코드

DOI QR Code

Dynamic Response for Critical Velocity Effect Depending on Supporting Stiffness of High-Speed Railway Trackbed

고속철도 노반지지조건에 따른 임계속도효과의 동적응답

  • Lee, Il-Wha (High-speed Railroad Systems Research Center, Korea Railroad Research Institute)
  • 이일화 (한국철도기술연구원 고속철도연구본부)
  • Received : 2012.03.05
  • Accepted : 2013.01.04
  • Published : 2013.01.31

Abstract

The critical velocity effect on railway trackbed means the amplification of vibration energy when the train running-speed and group velocity of ground surface wave are superimposed. It is called a pseudo-resonance phenomenon of time domain. In the past, it was not issued because the train speed was low and the ground group velocity was higher. But since the high-speed train is introduced, critical velocity reported causing a track irregularity. So far, theoretical analysis has been performed because of the complexity of formation process. However it requires reasonable consideration which is similar to actual track and trackbed conditions. In the present paper, finite element analysis to verify the critical velocity effect is performed considering each track structure and trackbed supporting stiffness. As a result, the deformation amplification caused by the critical velocity effect is verified to analyze each supporting stiffness and track system.

철도노반에서 임계속도효과는 시간영역에서의 유사-공진현상으로서 차량의 주행속도와 노반표면파의 군속도대역이 중첩되면서 에너지가 증폭되는 현상을 의미한다. 과거에는 열차의 주행속도가 낮고 지반의 군속도가 높았기 때문에 문제가 되지 않았으나, 열차속도가 고속화되면서 임계속도효과가 궤도틀림에 영향을 미치는 것으로 보고되고 있다. 현재까지는 임계속도에 대하여 주로 이론적인 분석만 제시되었는데 실질적인 임계속도효과를 효율적으로 평가하기 위해서는 궤도 및 노반의 지지강성을 현장조건과 유사하게 고려하는 것이 필요하다. 그래서 본 논문에서는 유한요소해석을 이용하여 궤도 및 노반의 지지조건을 고려한 임계속도해석을 수행하였다. 궤도조건은 자갈궤도와 콘크리트궤도로 구분하였으며 노반의 지지강성은 10~300MPa범위에서의 임계속도영향을 평가하였다. 해석결과 노반의 지지강성에 따른 변형증폭을 확인하였으며, 궤도지지조건에 대한 임계속도영향도 매우 큰 것으로 나타났다.

Keywords

References

  1. Coenraad, Esveld (2001), Modern Railway Track, 2001 MRT Productions.
  2. De Nie, F. C. (1948), Undulation of railway embankments on soft sub-soil during passing of trains. Proceedings of the 2-nd Conf. on Soil Mech. and Found. Engineering, Vol.II, pp.8-12.
  3. Fortin, J. P. (1982), La deformee dynamique de la voie ferree, Revue Generale des Chemins de Fer, Fevrier, 101e annee, pp.93-102.
  4. Hilling, J. (1996), Geotechnische Anforderungen an den Eisenbahnunterbau, Eisenbahningenieur 47, Marz, pp.24-31.
  5. Ko, H. S., Joh, S. H., Hwang, S. K., and Lee, I. W. (2004), "The Evaluation of Roadbed Stiffness using Continuous Surface-Wave (CSW) Method", Autumn Conference of Korea Society for Railway.
  6. Krylov, V. V. (1994), Ground vibrations generated by superfast trains. Noise & Vibration worldwide, June, Vol.25, No.6, pp.7-9.
  7. Lee, I. W. (2011), Dynamic Response Characteristics for Two-layered Trackbed Structure by Train Load, Journal of the Korea Society for Railway, Vol.14, No.2, pp.160-166. https://doi.org/10.7782/JKSR.2011.14.2.160
  8. Madshus, C. and Kaynia, A. M. (2000), High-speed Railway Lines on Soft Ground: dynamic behaviour at critical train speed, Journal of Sound and Vibration, Vol.231, pp.689-701. https://doi.org/10.1006/jsvi.1999.2647
  9. Steven, L. Kramer (1996), Geotechnical Earthquake engineering, Prentice-Hall Inc.
  10. Timoshenko, S. (1942), Strength of Materials, Part 2. Van Nostrand, New York.
  11. Woldringh, R. F. (1997), Notes on low embankments for high-speed lines on compressible subsoil. PAOCourse "High Speed Track", 11 June, Delft.

Cited by

  1. 열차 증속에 따른 콘크리트 궤도 노반의 동적 응력 변화 vol.29, pp.10, 2013, https://doi.org/10.7843/kgs.2013.29.10.57