• 제목/요약/키워드: 유체-구조 연성해석

Search Result 177, Processing Time 0.032 seconds

Acoustic Characteristics Analysis of piezoelectric Underwater Acoustic Sensors Using Finite Element Method. (유한요소법을 이용한 압전 수중음향센서의 음향특성 해석)

  • Son Sun Bong;Kim Jae Hwan
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.253-256
    • /
    • 2000
  • 본 연구에서는 유한요소법(FEM)을 이용하여 압전 수중음향센서의 모델링 및 음향특성을 해석하였다. 압전 복합구조 수중음향센서의 해석에서 기본적인 압전-탄성 구조물과 유체-구조물의 연성해석을 위한 유한요소 정식화를 하였으며 무한영역의 음향유체를 처리하기 위하여 IWEE(Infinite Wave Envelop Element)를 도입하였다. Topilz형 수중음향센서를 수중 산란체로 볼 경우 입사파가 산란체의 표면을 가진할 때 산란체로부터 발생되는 산란파는 IWEE로 인하여 무한 유체영역에서의 산란파의 감소특성을 갖게되어 무한영역을 유한영역으로 나눈 인위적인 경계에서 반사가 일어나지 않게 되므로 산란파의 음압을 정확히 구할 수 있었다. 또한, 이러한 산란해석을 바탕으로 입사파에 대한 음향센서 내부의 전기적 응답특성인 RVS(Receiving Voltage Signal)를 구하였다. 이러한 일련의 연구 과정들은 소나(SONAR) 시스템을 정확히 해석하고 음향특성을 예측하는 데 큰 도움이 될 것이다.

  • PDF

Evaluation of Aerodynamic Characteristics of NREL Phase VI Rotor System Using 2-Way Fluid-Structure Coupled Analysis Based on Equivalent Stiffness Model (등가강성모델 기반의 양방향 유체구조 연성해석을 적용한 NREL Phase VI 풍력 로터 시스템의 공력특성 평가)

  • Cha, Jin-Hyun;Song, Woo-Jin;Kang, Beom-Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.731-738
    • /
    • 2012
  • In this study, the evaluation of the aerodynamic characteristics of the NREL Phase VI Rotor System has been performed, for the 7 m/s upwind case using commercial FEA and CFD tools which are ANSYS Mechanical 12.1 and CFX 12.1. The initial operating conditions of the rotor blade include a $3^{\circ}$ tip pitch angle. A numerical simulation was carried out on only the rotor parts, excluding the tower structure based on the equivalent stiffness model, to consider the aeroelastic effect for the numerical simulation using the loosely coupled 2-way fluid-structure interaction method. The blade root bending moment was monitored in real time to obtain reasonable results. To verify the analysis results, the numerical simulation results were compared with the measurements in the form of the root bending moment and the pressure distributions of the NREL/NASA Ames wind tunnel test.

Hydroelastic Analysis of Structural Vibration in Contact with Fluid (접수구조물 진동의 유력탄성해석)

  • K.T. Chung;Y.B. Kim;H.S. Kang;J.H. Roh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.1
    • /
    • pp.135-142
    • /
    • 1992
  • In the vibration analysis or submerged of floating bodies such as ship and offshore structures, the coupled system between structure and fluid satisfying the compatibility conditions on the wetted surface should be considered. It is well known that the hydroelastic analysis of structural vibration in contact with fluid can be solved by applying the finite element method to structure and the boundary element method to fluid domain. However such an approach is impractical, because fluid added mass matrix is fully coupled on whole wetted surface. To overcome this shortcoming, an efficient approach based on reanalysis scheme is proposed in this paper. The proposed method can be applied for cases with higher modes lacking 3-D reduction factor J as well as beam-like modes of marine structures. It is well known the traditional method using 2-D added mass and J-factor is good only for beam-like modes with reliable J values. The validity and the calculation efficiency of the proposed method are proved with numerical examples.

  • PDF

Analysis of Rear Closer of Vertical Launching System by Using Fluid-Structure Interaction Method (유체-고체 연성 해석 기법을 통한 수직발사대 후방 덮개의 거동 해석)

  • Lee, Younghun;Gwak, Min-cheol;Cho, Haeseong;Joo, Hyun Shig;Shin, Sang Joon;Yoh, Jai-ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.664-671
    • /
    • 2017
  • This paper presents a numerical analysis of behaviors of rear closer of vertical launch system under rocket plume based on fluid structure interaction analysis. The rocket plume loading is modeled by fully Eulerian method and elasto-plastic behavior of rear cover is calculated by total Lagrangian method based on a 9-node planar element. The interface motion and boundary conditions are described by a hybrid particle level-set method within the ghost fluid framework. We compare the fluid flow pattern between different rear closer models which are elast-plastic and rigid deformation.

  • PDF

FLUID-STRUCTURE INTERACTION ANALYSIS FOR VORTEX-INDUCED VIBRATION OF CIRCULAR CYLINDER (유체-구조 연성해석을 통한 원주의 와유기 진동 해석)

  • Kim, S.H.;Ahn, H.T.;Ryue, J.S.;Shin, H.K.;Kwon, O.J.;Seo, H.S.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • Fluid-Structure Interaction analysis of a circular cylinder surrounded by incompressible turbulent flow is presented. The fluid flow is modeled by incompressible Navier-Stokes equations in conjunction with large-eddy simulation for turbulent vortical flows. The circular cylinder is modeled as elastic continuum described by elasto-dynamic equation of motion. Finite element method based approach is utilized for unified formulation of fluid-structure interaction analysis. The magnitude and frequency of structural response is analysed in comparison to the driving fluid forces.

Bird Strike Analysis and Test Report of Dummy and Real Blade Antenna (더미 및 실 블레이드 안테나 조류충돌 해석 및 시험)

  • Jeong, Hanui
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.24-31
    • /
    • 2018
  • The objectives of this study is to carry out Bird strike analysis and tests of a blade antenna of aircraft. FEMs (Finite Element Models) were created for the analysis, while dummy and real antennas were used for the bird strike tests. In the analysis, birds were modeled with SPH (Smooth Particle Hydrodynamics) method, and the behaviors of the bird, antenna, and joint structure between antenna and aircraft fuselage were simulated with the FSI (Fluid-Structure Interaction) method. After the bird strike test was performed, the results of the analysis and test showed that they had a positive relationship. The damage of antenna and bolted joint was checked, and the structural integrity of the airframe was proved.

자연모사를 위한 유체-구조 연성 해석

  • Kim, Dae-Gyeom
    • Journal of the KSME
    • /
    • v.56 no.12
    • /
    • pp.46-50
    • /
    • 2016
  • 이 글에서는 유연한 수중 동물들의 다양한 추진 및 감각 기관의 형태와 기능을 이해하기 위한 유체-구조 상호작용 연구와 이를 기반으로 한 자연모사 공학 응용에 대해 소개하고자 한다.

  • PDF

Random Vibration and Harmonic Response Analyses of Upper Guide Structure Assembly to Flow Induced Loads (유체유발하중을 받는 상부안내구조물의 랜덤진동 및 조화응답해석)

  • 지용관;이영신
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.59-68
    • /
    • 2002
  • The cylindrical Upper Guide Structure assembly of the reactor intervals wish the Core Support Barrel and the Inner Barrel Assembly is subjected to flow induced loads horizontally which include random pressure fluctuation due to turbulent flow and pump pulsation pressures. The purpose of this papers is to perform random vibration and harmonic response analyses fort flow induced loads. The dynamic response characteristics due to random turbulence and pump pulsation loads were evaluated using the lumped mass beam model. Especially the model considered the annulus effects due to water gaps existing between cylindrical structures such as the Upper Guide Structure Barrel, the Core Support Barrel, and the Inner Barrel Assembly. The effect of the Inner Barrel Assembly inside the Upper Guide Structure assembly was studied. The peak dynamic responses lot each loading condition due to the addition of IBA were affected by the natural frequencies of the structures. Therefore the peak dynamic responses of the structures should be conservatively obtained from evaluation of dynamic analysis for various loading conditions.