• Title/Summary/Keyword: 유도결합 플라즈마

Search Result 671, Processing Time 0.024 seconds

A Study on the characteristics of Electron Energy Distribution function of the Radio-Frequency Inductively Coupled Plasma (고주파 유도결합 플라즈마의 전자에너지 분포함수 특성에 관한 연구)

  • 황동원;하장호;전용우;최상태;이광식;박원주;이동인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.131-133
    • /
    • 1998
  • Electron temperature, electron density and electron energy distribution function were measured in Radio-Frequency Inductively Coupled Plasma(RFICP) using a probe method. Measurements were conducted in argon discharge for pressure from 10 mTorr to 40 mTorr and input rF power from 100W to 600W and flow rate from 3 sccm to 12 sccm. Spatial distribution of electron temperature, electron density and electron energy distribution function were measured for discharge with same aspect ratio (R/L=2). Electron temperature was found to depend on pressure, but only weakly on power. Electron density and electron energy distribution function strongly depended on both pressure and power. Electron density and electron energy distribution function increased with increasing flow rate. Radial distribution of the electron density and electron energy distribution function were peaked in the plasma center. Normal distribution of the electron density, electron energy distribution function were peaked in the center between quartz plate and substrate. These results were compared to a simple model of ICP, finally, we found out the generation mechanism of Radio-Frequency Inductively Coupled Plasma.

  • PDF

Etching Characteristics of Ba2Ti9O20(BTO) Thin Films in Inductively Coupled an Ar/Cl2 Plasma (Ar/Cl2 혼합가스를 이용한 Ba2Ti9O20(BTO) 박막의 유도결합 플라즈마 식각)

  • Kim, Young-Keun;Kwon, Kwang-Ho;Lee, Hyun-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.276-279
    • /
    • 2011
  • This work, the etching characteristics of $Ba_2Ti_9O_{20}$(BTO) thin films were investigated using an inductively coupled plasma (ICP) of $Ar/Cl_2$ gas mixture. The etch rate of BTO thin films as well as the $BTO/SiO_2$ and BTO/PR etch selectivity were measured as functions of $Ar/Cl_2$ mixing ratio (0~100% Ar) at a constants gas pressure (6 mTorr), total gas flow rate (50 sccm), input power (700 W) and bias power (200 W). The etch rate of BTO thin films decreased with increasing Ar fraction. To analyze the etching mechanism an optical emission spectroscopy (OES), double Langmuir probe(DLP) and surface analysis using X-ray photoelectron spectroscopy (XPS) were carried out.

Growth Behavior of Nanocrystalline CrN Coatings by Inductively Coupled Plasma (ICP) Assisted Magnetron Sputtering (유도결합 플라즈마를 이용한 마그네트론 스퍼터링으로 증착된 나노결정질 CrN 코팅막의 성장)

  • Seo, Dae-Han;Chun, Sung-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.556-560
    • /
    • 2012
  • Nanocrystalline CrN coatings were deposited by DC and ICP-assisted magnetron sputtering on Si (100) substrates. The influences of the ICP power on the microstructural and crystallographic properties of the coatings were investigated. For the generation of the ICP, radio frequency was applied using a dielectric-encapsulated coil antenna installed inside the deposition chamber. As the ICP power increased from 0 to 500W, the crystalline grain size decreased. It is believed that the decrease in the crystal grain size at higher ICP powers is due to resputtering of the coatings as a result of ion bombardment as well as film densification. The preferential orientation of CrN coatings changed from (111) to (200) with an increase in the ICP power. The ICP magnetron sputtering CrN coatings showed excellent surface roughness compared to the DC magnetron sputtering coatings.

The Etching Properties of SBT Thin Films in Cl$_2$ Inductively Coupled Plasma (Cl$_2$ 유도결합 플라즈마를 이용한 SBT 박막의 식각특성)

  • Kim, Dong-Pyo;Kim, Chang-Il
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.5
    • /
    • pp.211-215
    • /
    • 2001
  • SBT thin films were etched at different content of $Cl_2$ in $Cl_2$/Ar or $Cl_2/N_2$(80%). As $Cl_2$ gas increased in $Cl_2$/Ar or $Cl_2/N_2$ gas plasma. the etch rate decreased. The result indicates that physical puttering of charged particles is dominant to chemical reaction in etching SBT thin films. To evaluate the etching mechanism of SBT thin films, x-ray photoelectron to chemical reaction in etching SBT thin films. To evaluate the etching mechanism of SBT thin films, x-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS) and atomic force microscopy (AFM) were carried out. From the result of AFM, the rms values of etched samples in Ar only or $Cl_2$ only plasma were higher than that of as-deposited, $Cl_2$/Ar and $Cl_2/N_2$ plasma. This can be illustrated by a decrease of Bi content of nonvolatile etching products (Sr-Cl and Ta-Cl), which are revealed by XPS and SIMS.

  • PDF

The Development of Deep Silicon Etch Process with Conventional Inductively Coupled Plasma (ICP) Etcher (범용성 유도결합 플라즈마 식각장비를 이용한 깊은 실리콘 식각)

  • 조수범;박세근;오범환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.701-707
    • /
    • 2004
  • High aspect ratio silicon structure through deep silicon etching process have become indispensable for advanced MEMS applications. In this paper, we present the results of modified Bosch process to obtain anisotropic silicon structure with conventional Inductively Coupled Plasma (ICP) etcher instead of the expensive Bosch process systems. In modified Bosch process, etching step ($SFsub6$) / sidewall passivation ($Csub4Fsub8$) step time is much longer than commercialized Bosch scheme and process transition time is introduced between process steps to improve gas switching and RF power delivery efficiency. To optimize process parameters, etching ($SFsub6$) / sidewall passivation ($Csub4Fsub8$) time and ion energy effects on etching profile was investigated. Etch profile strongly depends on the period of etch / passivation and ion energy. Furthermore, substrate temperature during etching process was found to be an important parameter determining etching profile. Test structures with different pattern size have been etched for the comparison of the aspect ratio dependent etch rate and the formation of silicon grass. At optimized process condition, micropatterns etched with modified Bosch process showed nearly vertical sidewall and no silicon grass formation with etch rate of 1.2 ${\mu}{\textrm}{m}$/ min and the size of scallop of 250 nm.

Etching properties of (Pb,Sr)$TiO_3$ thin films using $Cl_2/Ar$ inductively coupled plasma ($Cl_2/Ar$ 유도결합 플라즈마를 이용한 (Pb,Sr)$TiO_3$ 박막의 식각 특성)

  • Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.182-185
    • /
    • 2003
  • Etching characteristics of (PB,Sr)$TiO_3$(PST) thin films Were investigated using inductively coupled chlorine based plasma system as functions of gas mixing ratio, RF power and DC bias voltage. It was found that increasing of Ar content in gas mixture' lead to sufficient increasing of etch rate and selectivity of PST to Pt. The maximum etch rate of PST film is 562 ${\AA}$/min and the selectivity of PST film to Pt is 0.8 at $Cl_2/(Cl_2+Ar)$ of 20 %. It was proposed that sputter etching is dominant etching mechanism while the contribution of chemical reaction is relatively low due to low volatility of etching products.

  • PDF

A Study of the Dry Etching Properties of TiN Thin Film in He/BCl3/Cl2 Inductively Coupled Plasma (He/BCl3/Cl2유도결합 플라즈마를 이용한 TiN 박막의 식각 특성)

  • Woo, Jong-Chang;Joo, Young-Hee;Park, Jung-Soo;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.718-722
    • /
    • 2011
  • In this work, we investigated to the etching characteristics of the TiN thin film in He/$BCl_3/Cl_2$ plasma. The etch rate was measured by the gas mixing ratio, the RF power, the DC bias voltage and the process pressure. The maximum etch rate in He/$BCl_3/Cl_2$ plasma was 59 nm/min. The etch rate increased as the RF power and the DC-bias voltage was increased. The chemical reaction on the surface of the etched the TiN thin films was investigated with X-ray photoelectron spectroscopy (XPS). The intensity of Ti 2p and N 1s peaks are varied during etching process. A new peak was appeared in He/$BCl_3/Cl_2$ plasma. The new peak was revealed Ti-$Cl_x$ by Cl 2p peak of XPS wild scan spectra analysis.

Characterization of Inductively Coupled Ar/CH4 Plasma using the Fluid Simulation (유체 시뮬레이션을 이용한 유도결합 Ar/CH4 플라즈마의 특성 분석)

  • Cha, Ju-Hong;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1376-1382
    • /
    • 2016
  • The discharge characteristics of inductively coupled $Ar/CH_4$ plasma were investigated by fluid simulation. The inductively coupled plasma source driven by 13.56 Mhz was prepared. Properties of $Ar/CH_4$ plasma source are investigated by fluid simulation including Navier-Stokes equations. The schematics diagram of inductively coupled plasma was designed as the two dimensional axial symmetry structure. Sixty six kinds of chemical reactions were used in plasma simulation. And the Lennard Jones parameter and the ion mobility for each ion were used in the calculations. Velocity magnitude, dynamic viscosity and kinetic viscosity were investigated by using the fluid equations. $Ar/CH_4$ plasma simulation results showed that the number of hydrocarbon radical is lowest at the vicinity of gas feeding line due to high flow velocity. When the input power density was supplied as $0.07W/cm^3$, CH radical density qualitatively follows the electron density distribution. On the other hand, central region of the chamber become deficient in CH3 radical due to high dissociation rate accompanied with high electron density.

Analysis of Inductively Coupled Plasma using Electrostatic Probe and Fluid Simulation (정전 탐침법과 유체 시뮬레이션을 이용한 유도결합 Ar 플라즈마의 특성 연구)

  • Cha, Ju-Hong;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1211-1217
    • /
    • 2016
  • Discharge characteristics of inductively coupled plasma were investigated by using electrostatic probe and fluid simulation. The Inductively Coupled Plasma source driven by 13.56 Mhz was prepared. The signal attenuation ratios of the electrostatic probe at first and second harmonic frequency was tuned in 13.56Mhz and 27.12Mhz respectively. Electron temperature, electron density, plasma potential, electron energy distribution function and electron energy probability function were investigated by using the electrostatic probe. Experiment results were compared with the fluid simulation results. Ar plasma fluid simulations including Navier-Stokes equations were calculated under the same experiment conditions, and the dependencies of plasma parameters on process parameters were well agreed with simulation results. Because of the reason that the more collision happens in high pressure condition, plasma potential and electron temperature got lower as the pressure was higher and the input power was higher, but Electron density was higher under the same condition. Due to the same reason, the electron energy distribution was widening as the pressure was lower. And the electron density was higher, as close to the gas inlet place. It was found that gas flow field significantly affect to spatial distribution of electron density and temperature.

Impedance Properties of Solenoid Coil for Electrodeldss lamp (무전극 형광램프 안테나 코일의 임피던스 특성)

  • Kim, Kwang-Soo;Jo, Ju-Ung;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.525-528
    • /
    • 2003
  • 유도결합형 플라즈마를 이용하는 무전극 형광램프는 소프트 페라이트를 이용하여 방전을 유도하며, 페라이트의 주파수나 온도 특성이 안정하면, 공심 솔레노이드코일을 사용하였을 때보다 램프저력이 더 효율적이 된다. 페라이트의 형상과 코일의 권선수는 코일의 임피던스, 인덕턴스, Q-factor에 직접적으로 영향을 주며, 감은 위치에 변화에 의해서도 그 값들이 변할 수 있다. 본 논문에서는 전구형 무전극 형광램프의 방전에 중요한 역할을 하는 안테나에 대한 실험 결과로서 Mn-Zn 페라이트를 이용한 솔레노이드 코일에 주파수와 코일의 권선수를 변화시켜 코일의 전기적 특성을 조사하였다. 임피던스 특성은 주파수가 증가함에 따라 증가하였으며, 코일의 권선수가 14회일 때, 기존 램프의 안테나와 비슷한 324[$\Omega$]을 나타내었으나, Q-factor는 코일의 권선수가 증가할 수 록 감소하였으며, 기존 램프의 안테나와 많은 차이를 나타내었다.

  • PDF