• Title/Summary/Keyword: 위상 변조/복조

Search Result 52, Processing Time 0.024 seconds

A New Technique for Improvement of Dynamic Range in Fiber Optic Acoustic Sensor using Sagnac Interferometers (Sagnac 간섭계를 이용한 광섬유 음향 센서의 동적 범위 향상 기법)

  • Nam, Sung-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.416-423
    • /
    • 2000
  • A new demodulation technique which can be used for the fiber optic acoustic sensor system using Sagnac interferometer is described. The theoretical limitation in dynamic range of the quadrature demodulation technique can be removed by the proposed BPSK(Binary Phase Shift Keying) demodulation technique. Full demodulation of input acoustic signal is possible with just simple electronics by eliminating the necessity of the high frequency phase modulation. This technique is suitable for digital signal processing of fiber optic sensor systems and can be applicable for other interferometers.

  • PDF

An Implementation of FM-extended Stereo System via Application of Quadrature Modulation and Companding Method (직교 변조 및 압신 방식을 이용한 확장형 FM 스테레오 방식의 구현)

  • Heo, Dong-Kyu;Kim, Kee-Keun;Kim, Ju-Koang;Ryu, Heung-Gyoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.44-51
    • /
    • 1991
  • In this paper, we have studied the FM-extended broadcasting which makes the enhancement of stereo signal-to-noise ration by utilizing the compression technique and quadrature moduation method of standard subcarrier signal in transmitter station, and corresponding demodulation method and expansion technique in receiver system. The proposed system is completely compatible with the conventional FM stereo system. We have confirmed the validity of the proposed method by implementation of transmitter/receiver system including quadrature modulation/demodulation and companding system.

  • PDF

Double Encryption of Image Based on Scramble Operation and Phase-Shifting Digital Holography (스크램블 연산 및 위상 천이 디지털 홀로그래피 기반 영상 이중 암호화)

  • Kim, Cheol-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.4
    • /
    • pp.13-22
    • /
    • 2018
  • In this paper, double encryption technology of image based on scramble operation and phase-shifting digital holography is proposed. For the purpose, we perform first encryption digitally using scramble operation for the to be encrypted image, and perform phase modulation to the first encrypted image. Finally, we get the secondary encryption information through the interference between the phase-shifted reference wave and phase modulated image. The decryption process proceeds in the reverse order of the encryption process. The original image is reconstructed by digitally decoding the two encrypted images through a phase shift digital holography technique that appropriately performs arithmetic processing, phase-demodulating and then using the encryption key information used in the scramble operation. The proposed cryptosystem can recover the original image only if both the key information used in the scramble operation, the distance information used in the phase shift digital holography technique, and the wavelength of the light source are known accurately.

Design of MRI Spectrometer Using 1 Giga-FLOPS DSP (1-GFLOPS DSP를 이용한 자기공명영상 스펙트로미터 설계)

  • 김휴정;고광혁;이상철;정민영;장경섭;이동훈;이흥규;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.1
    • /
    • pp.12-21
    • /
    • 2003
  • Purpose : In order to overcome limitations in the existing conventional spectrometer, a new spectrometer with advanced functionalities is designed and implemented. Materials and Methods : We designed a spectrometer using the TMS320C6701 DSP capable of 1 giga floating point operations per second (GFLOPS). The spectrometer can generate continuously varying complicate gradient waveforms by real-time calculation, and select image plane interactively. The designed spectrometer is composed of two parts: one is DSP-based digital control part, and the other is analog part generating gradient and RF waveforms, and performing demodulation of the received RF signal. Each recover board can measure 4 channel FID signals simultaneously for parallel imaging, and provides fast reconstruction using the high speed DSP. Results : The developed spectrometer was installed on a 1.5 Tesla whole body MRI system, and performance was tested by various methods. The accurate phase control required in digital modulation and demodulation was tested, and multi-channel acquisition was examined with phase-array coil imaging. Superior image quality is obtained by the developed spectrometer compared to existing commercial spectrometer especially in the fast spin echo images. Conclusion : Interactive control of the selection planes and real-time generation of gradient waveforms are important functions required for advanced imaging such as spiral scan cardiac imaging. Multi-channel acquisition is also highly demanding for parallel imaging. In this paper a spectrometer having such functionalities is designed and developed using the TMS320C6701 DSP having 1 GFLOPS computational power. Accurate phase control was achieved by the digital modulation and demodulation techniques. Superior image qualities are obtained by the developed spectrometer for various imaging techniques including FSE, GE, and angiography compared to those obtained by the existing commercial spectrometer.

  • PDF

The Demodulation for Bipolar Delta Driven GMSK (바이폴라 델타 구동 GMSK에 대한 복조)

  • Bang, Seung-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.10
    • /
    • pp.824-831
    • /
    • 2013
  • The delta driven GMSK is a modulation scheme to generate the gaussian pulse by the bipolar delta signal and to modulate the phase function with the differential gaussian pulse between $+T_b/2$ and $-T_b/2$. The demodulation of delta driven GMSK differs from conventional GMSK schemes. This paper proposed a demodulation with the differential phase detector at the end of each bit interval. A designed detector then finds the one of the possible region by hard decision, in which the phase difference lies. Finally the binary data can be recovered by state transition process. Through the BER simulation for AWGN channel, it was found that the proposed demodulation effected by the run length of binary data. The simulated BER degradation of about 2[dB] was analyzed, as compared to the theoretical coherent demodulation with $BT_b$=0.3.

Synchronization Algorithm and Demodulation using the Phase Transition Detection in the DSP based MPSK Receiver (DSP 기반 MPSK 수신기에서 위상천이 검출을 이용한 동기 알고리즘과 복조)

  • Lee Jun-Seo;Maing Jun-Ho;Ryu Heung-Gyoon;Park Cheol-Sun;Jang Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.952-960
    • /
    • 2004
  • PSK(Phase Shift Keying) is useful because of the power and spectral efficient modulation. In this paper, no additional hardware will be needed to support various transmit mode in the suggested DSP scheme. We design and implement the synchronization algorithm for M-ary PSK(M=2, 4) demodulator based on DSP scheme, instead of complex analog PSK demodulator. TMS320C6203 is used as DSP. We check the all kinds of waveforms via the graph view window after software programming the emulation on the DSP tool. The result of implementation proves that demodulator using the suggested algorithm has equal performance with demodulator using analog circuits.

Design of QPSK Demodulator Using CMOS BPSK Receiver and Reflection-Type Phase Shifter (CMOS 기반 BPSK 수신기와 반사형 위상 천이기를 이용한 QPSK 복조기 설계)

  • Moon, Seong-Mo;Park, Dong-Hoon;Yu, Jong-Won;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.770-776
    • /
    • 2009
  • We propose and demonstrate an I/Q demodulator using four-port BPSK demodulator base on additive mixing and reflection-type phase shifter using hybrid technique. Previously, the conventional I/Q demodulator base on multiplicative or additive mixing method divides I/Q signal path from mixer to parallel-to-serial converter. In this paper, we propose new I/Q demodulator without dividing I/Q baseband signal path. The proposed schematic requires half size in implementation and half power consumption in baseband path compared with the conventional receiver. Also, the proposed receiver eliminates parallel-to-serial converter after data decoding. The proposed circuit has been successfully demodulated a QPSK signal with the L-band carrier frequency and 20 Mbps data rate.

Design of a Carrier Recovery Loop with Minimum Phase Rotation (Phase Rotation 방지를 위한 Carrier Recovery Loop의 설계)

  • Choi, Han-Jun;Lee, Seung-Jun
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.2
    • /
    • pp.62-67
    • /
    • 1999
  • Phase rotational is a practical problem in the implementation of coherent demodulation. Large phase noise may intorduce phase rotation in the demodulator which results in repeated decision errors. This paper presents a simple and yet very efficient technique in building a carrier recovery loop which minimizes the phase rotation by improving the stability of the decision-directed carrier recovery loop. Simulation shows this novel technique improves the performance of the carrier recovery loop as well as stability.

  • PDF

Analysis and design of a FSK Demodulator with Digital Phase Locked Loop (디지털 위상고정루프를 이용한 ESK복조기의 설계 및 성능 분석)

  • 김성철;송인근
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.2
    • /
    • pp.194-200
    • /
    • 2003
  • In this paper, FSK(Frequency Shift Keying) demodulator which is widely used for FH-SS system is designed and the experimental results are analyzed. The performance of the ADPLL(All-digital Phase-Locked-Loop), which is the main part of the demodulator circuit, is analyzed by the computer program. Using Maxplus-II tool provided by altera. co., ltd, each part of the ADPLL is designed and all of them is integrated into EPM7064SLC44-10 chip. And the simulation results are compared with the characteristics of the implemented circuits for analysis. There is about 2${\mu}\textrm{s}$ difference in time constant of the PLL. This difference is not critical in the demodulator. And the experimental results show that the transmitted data is well demodulated when the phase difference between the FSK modulated signal and the reference signal is about 180 degree.

FBG Sensor Demodulation Using a Double-Pass Mach-Zhender Interferometer (더블패스 마하젠더 간섭계를 이용한 광섬유 격자 센서의 파장복조)

  • Park, Hyoung-Jun;Song, Min-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.285-290
    • /
    • 2007
  • A wavelength-demodulation algorithm for FBG sensor is proposed by using a double-pass Mach-Zehnder interferometer. Zero-crossing points of double-passed interference signal are used to trigger the accurate $90^{\circ}C$ phase difference positions in the sensor signal, which is an essential condition in the subsequent arctangent and phase unwrapping signal processing. With the proposed method, we could efficiently measure various measurands, such as dynamic-, static-strain, and temperature, and ${\sim}8pm$ of wavelength resolution was obtained.