DOI QR코드

DOI QR Code

The Demodulation for Bipolar Delta Driven GMSK

바이폴라 델타 구동 GMSK에 대한 복조

  • 방승철 (동서울대학교 정보통신과)
  • Received : 2013.07.21
  • Accepted : 2013.09.26
  • Published : 2013.10.31

Abstract

The delta driven GMSK is a modulation scheme to generate the gaussian pulse by the bipolar delta signal and to modulate the phase function with the differential gaussian pulse between $+T_b/2$ and $-T_b/2$. The demodulation of delta driven GMSK differs from conventional GMSK schemes. This paper proposed a demodulation with the differential phase detector at the end of each bit interval. A designed detector then finds the one of the possible region by hard decision, in which the phase difference lies. Finally the binary data can be recovered by state transition process. Through the BER simulation for AWGN channel, it was found that the proposed demodulation effected by the run length of binary data. The simulated BER degradation of about 2[dB] was analyzed, as compared to the theoretical coherent demodulation with $BT_b$=0.3.

델타 구동 GMSK는 바이폴라 델타 신호로 가우시안 펄스를 생성하고 $+T_b/2$$-T_b/2$ 사이의 차분 신호로 위상변조하는 방식이다. 이러한 방식에 대한 복조는 기존의 GMSK와는 다르게 설계해야 한다. 본 논문에서는 인접한 비트 간의 위상 변화를 검출하고 위상 영역을 경판정한 다음에 상태 전이로 이진 데이터를 복원하는 방식을 설계하였다. AWGN 채널에 대한 전산모의실험 결과, 이진 데이터의 런 랭스에 의한 비트 오율의 영향이 확인되었으며, 이론적인 코히어런트 복조의 BER과 비교해서 $BT_b$=0.3에 대하여 2[dB] 정도의 성능 저하가 있는 것으로 분석되었다.

Keywords

References

  1. T. Turletti, "GMSK in a nutshell," Telemedia Networks and Systems Group LCS, MIT-TR, Apr. 1996.
  2. P. K. Govindaiah, "Design and development of gaussian minimum shifting keying(GMSK) demodulator for satellite communication," Bonfring Int. J. Research Commun. Eng., vol. 2, no. 2, pp. 6-11, June 2012. https://doi.org/10.9756/BIJRCE.1287
  3. J. Gal, A. Campeanu, and I. Nafornita, "Noncoherent demodulation of continuous phase modulated signals using Kalman filtering," in Proc. 12th. Int. Conf. Optimization Elect. Electron. Equipment (OPTIM), pp. 724-727, Brasov, Romania, May 2010.
  4. A. Mahdavi, D. Gordon, and N. Riley, "Differential GMSK receivers with phase control for narrowband radio communication," Radio Eng., vol. 7, no. 4, pp. 18-23, Dec. 1998.
  5. C. Min, L. Xin, and L. Ji-ping, "Joint iterative noncoherent demodulation and MAP decoding algorithm for GMSK signal based on SCCC structure," in Proc. 12th. IEEE Int. Conf. Commun. Tech. (ICCT), pp. 917-920, Nanjing, China, Nov. 2010.
  6. H. Mathis, "Differential detection of GMSK signals with low BtT using the SOVA," IEEE Trans. Commun., vol. 46, no. 4, pp. 428-430, Apr. 1998. https://doi.org/10.1109/26.664293
  7. S. C. Bang and W. S. Lee, "The GMSK modulation for bipolar delta signal," J. KICS, vol. 38B, no. 7, pp. 581-588, July 2013. https://doi.org/10.7840/kics.2013.38B.7.581
  8. L. Hars, "Formulae and algorithms for the GMSK modulation," in Proc. DSP World Workshop, pp. 221-238, Toronto, Canada, Sep. 1998.
  9. I. Korn, "GMSK with limiter discriminator detection in satellite mobile channel," IEEE Trans. Commun., vol. 39, no. 1, pp. 94-101, Jan. 1991. https://doi.org/10.1109/26.68280
  10. R. I. Seshadri, D. Lao, C. Kwan, and J. P. Fonseka, "Bandwidth constrained low complexity noncoherent CPM with ML soft-decision differential phase detection," in Proc. IEEE Military Commun. Conf. (MILCOM 2005), vol. 1, pp. 7-12, Altantic City, U.S.A., Oct. 2005.
  11. MX-COM Inc., MSK and its Application to Wireless Data Transmission(1997), Retrieved Aug., 14, 2013, from http://www.digitalsignallabs.com/msk.pdf.
  12. D. Devi, "BER performance of GMSK using MATLAB," Int. J. Advanced Res. Comput. Eng. Tech., vol. 2, no. 4, pp. 1389-1392, Apr. 2013.
  13. M. Rai and A. Nigam, "Analysis of performance improvement using GMSK modulation technique in wireless DS-CDMA communication systems," Int. J. Eng. Sci. Tech., vol. 4, no. 5, pp. 1871-1875, May 2012.
  14. L. Ma and D. Asano, "Performance of GMSK and Reed-Solomon code combinations," IEICE Trans. Fundam. Electron., Commun., Comput. Sci., vol. E88-A, no. 10, pp. 2863-2868, Oct. 2005. https://doi.org/10.1093/ietfec/e88-a.10.2863
  15. P. A. Laurent, "Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulses." IEEE Trans. Commun., vol. 34, no. 2, pp. 150-160, Feb. 1986. https://doi.org/10.1109/TCOM.1986.1096504