• Title/Summary/Keyword: 움직이는 격자

Search Result 23, Processing Time 0.029 seconds

Image Enhancement using Weighted Cross-Shaped Moving Window Median Filter (가중 격자형 메디안 필터를 이용한 영상향상)

  • Kim, Su-Yeong;Lee, Seung-Sang;Kang, Seong-Jun;Na, Cheol-Hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.807-810
    • /
    • 2013
  • In this paper, a new technique for image enhancement using weighted cross-shaped median filter with edge-detection algorithm is proposed. It consists of simple hypothesis test for edge-detection, and makes use of the cross-shaped moving window. This method is applied to noise corrupted image and its results are compared with those of median filters. As for the experimental result, method of weighted cross-shaped median filter is superior to other median filters.

  • PDF

Numerical Simulation of Airframe Separation of a Missile System Using an Unstructured Overset Mesh Technique (비정렬 중첩격자기법을 이용한 유도무기의 기체분리운동 모사)

  • Jeong, Mun-Seung;Lee, Sang-Uk;Gwon, O-Jun;Heo, Gi-Hun;Byeon, U-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.19-29
    • /
    • 2006
  • In this study, numerical simulation of airframes separating from a missile system has been preformed. For the time-accurate trajectory simulation, six D.O.F equations of motion of multiply connected bodies were derived and these equations have been coupled with the unstructured overset mesh technique for the treatment of independent mesh blocks moving with each body component. Applications were made for the simulation of the airframe separation at missile angles of attack of 0 and 5 degrees. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

Fringe Sensitivity of Projection Moire Topography Due to Position of Light Source and Object Distance According to Grating Periods (영사식 무아레 토포그래피에서 격자 주기에 따른 물체거리와 광원의 위치에 대한 무늬 민감도 변화)

  • Oh, Hyun Seock;Ju, Yun Jae;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.2
    • /
    • pp.67-72
    • /
    • 2016
  • In projection moire topography, the investigation of fringe sensitivity, which means the change rate of fringe order according to object height, is important and necessary to reduce the measurement error of the shape of an object. Using the fringe sensitivity, the determination of the absolute orders of moire fringes can be performed very easily and rapidly. The important parameters in the determination of absolute orders of fringes are the positions of light source and object, and the grating period in projection moire topography. Among these parameters, the fringe sensitivity due to the transverse motion of the light source and the longitudinal motion of the object according to grating periods are analyzed and compared. As a result, whereas the fringe sensitivity in the transverse-motion method increases linearly and gradually as the distance between light source and imaging sensor increases, the fringe sensitivity due to the longitudinal-motion method decreases dramatically as the distance between imaging lens and object increases. In these methods, the fringe sensitivity and its change increase as the grating period increases.

Study on Characteristics of a Droplet in Two-dimensional Channel with Moving Bottom Wall (바닥면이 움직이는 이차원 채널 내 액적의 특성 연구)

  • Kim, Hyung-Rak;Yoon, Hyun-Sik;Jeong, Hae-Kwon;Ha, Man-Yeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.103-110
    • /
    • 2011
  • A two-dimensional immiscible droplet deformation phenomena on moving wall in a channel has been investigated by using lattice Boltzmann method involving two-phase model. The dependence of the deformation of the droplet with different sizes on the contact angle and the velocity of bottom wall has studied. When the bottom wall starts to move, the deformation of the droplet occurs. For the largest bottom wall velocity, eventually, the deformation of the droplet is classified into the three patterns according to the contact angle.

Real-time Ocean Wave Simulation and Rendering using GPU (GPU를 이용한 실시간 바다 시뮬레이션 및 렌더링)

  • Lee Dong-Min;Lee Sung-Kee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.91-93
    • /
    • 2006
  • 자연현상 중의 하나인 바다의 파도는 그 규모가 거대할 뿐만 아니라 일정한 형태가 없이 바람에 의해서 계속해서 움직이며 주위의 사물과 상호작용한다. 이러한 바다를 컴퓨터를 통해 모방하고 표현하기란 쉽지 않으며 많은 계산시간을 필요로 한다. 본 논문에서는 그래픽스 하드웨어를 사용하여 움직이는 바다 영상을 실시간으로 생성하기 위한 방법을 제안한다. Gerstner 모델과 스펙트럼 모델을 기반으로 그래픽스 하드웨어에서 생성된 저해상도의 비균일격자 메쉬와 고해상도의 균일격자 법선 텍스쳐를 사용하여 바다를 표현한다. 전체과정이 그래픽스 하드웨어에서 처리되기 때문에 렌더링시에 시스템 메모리로부터 그래픽스 하드웨어로의 데이터전송에 따른 병목현상을 예방할 수 있을 뿐만 아니라 CPU자원을 차지하지 않기 때문에 컴퓨터 게임과 같이 CPU에 않은 연산이 집중되는 실시간 애플리케이션에 활용도가 크다. 또한 제안하는 방법은 잔잔한 바다뿐만 아니라 거칠고 파도가 높은 바다의 모습도 쉽고 빠르게 표현할 수 있다.

  • PDF

A NUMERICAL SIMULATION METHOD FOR FREE SURFACE FLOWS NEAR MOVING BODIES IN A FIXED RECTANGULAR GRID SYSTEM (고정된 직사각형 격자계에서 움직이는 물체주위 자유수면유동 계산을 위한 수치기법의 개발)

  • Jeong, K.L.;Lee, Y.G.;Ha, Y.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.395-406
    • /
    • 2011
  • In this research a numerical simulation method is developed for moving body in free surface flows using fixed staggered rectangular grid system. The non-linear free surface near the body is defined by marker-density method. The body boundary is defined by line segment connecting the points where the body surface and grid line meet. Continuity equation and Navier-Stokes equations are used as governing equations and the equations are coupled with two-step projection method. The velocities and pressures of body boundary and free surface cells are calculated with simultaneous iterative method. To treat a body movement in a fixed grid system, the volume displaced by moving body is added to the divergence of the body boundary cell. For the verification of the present numerical method. vortex shedding period of advancing cylinder is calculated and the period is compared with existing experiment results. Moreover, added mass and damping coefficients of a vertically excited box are calculated and the computed results are compared with published experiment results. Impulsive pressure and water level variation due to sloshing phenomenon are simulated and the results are compared with published experiment results. Varying the plunger shape, the waves generated by plunging type wave maker are compared with the 2nd order Stokes wave theory The plunger shape generating the wave that shows the best agreement with the theory is represented.

  • PDF

Numerical Investigation of Mixing Characteristics in a Cavity Flow by Using Hybrid Lattice Boltzmann Method (혼성 격자볼츠만 방법을 이용한 공동 형상 내부에서의 혼합 특성에 관한 수치적 연구)

  • Shin, Myung Seob;Jeon, Seok Yun;Yoon, Joon Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.683-693
    • /
    • 2013
  • In this study, the mixing characteristics in lid-driven cavity flows were studied numerically by using a hybrid lattice Boltzmann method (HLBM). First, we compared the numerical results from single-relaxation-time (LB-SRT) and multi-relaxation-time (LB-MRT) models to examine their reliability. In most of the cavity flow, the results from both the LB-SRT and the LB-MRT models were in good agreement with those using a Navier-Stokes solver for Re=100-5000. However, the LB-MRT model was superior to the LB-SRT model for the simulation of higher Reynolds number flows having a geometrical singularity with much lesser spatial oscillations. For this reason, the LB-MRT model was selected to study the mass transport in lid-driven cavity flows, and it was demonstrated that mass transport in the fluid was activated by a recirculation zone in the cavity, which is connected from the top to the bottom surfaces through two boundary layers. Various mixing characteristics such as the concentration profiles, mean Sherwood (Sh) numbers, and velocity were computed. Finally, the detailed transport mechanism and solutions for the concentration profile in the cavity were presented.

Development of Reinforcement Learning-based Obstacle Avoidance toward Autonomous Mobile Robots for an Industrial Environment (산업용 자율 주행 로봇에서의 격자 지도를 사용한 강화학습 기반 회피 경로 생성기 개발)

  • Yang, Jeong-Yean
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.3
    • /
    • pp.72-79
    • /
    • 2019
  • Autonomous locomotion has two essential functionalities: mapping builds and updates maps by uncertain position information and measured sensor inputs, and localization is to find the positional information with the inaccurate map and the sensor information. In addition, obstacle detection, avoidance, and path designs are necessarily required for autonomous locomotion by combining the probabilistic methods based on uncertain locations. The sensory inputs, which are measured by a metric-based scanner, have difficulties of distinguishing moving obstacles like humans from static objects like walls in given environments. This paper proposes the low resolution grid map combined with reinforcement learning, which is compared with the conventional recognition method for detecting static and moving objects to generate obstacle avoiding path. Finally, the proposed method is verified with experimental results.

UNSTEADY STAGING FLOW ANALYSIS USING MOVING GRID SYSTEM (움직이는 격자를 이용한 비정상 단분리 유동해석)

  • Kwon K. B.;Yoon Y. H.;Hong S. K.
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.43-47
    • /
    • 2005
  • In this study, the numerical and dynamic simulation on staging problem including forward jet mechanism is conducted. The forward jet plays a vital role in staging, which jets out from aftbody. This staging environment needs full dynamic characteristics study and flow analysis for securing staging safety. Present study performs dynamic simulation of forebody and aftbody with flow analysis using the Chimera grid scheme which is usually used for moving body simulations. As a result, the separation mechanism using forward jet well work in staging for given initial conditions and reverse thrust, chamber pressure variation from experiments. Furthermore, it is found that the technique using forward jets for staging is excellent for securing the separation safety.

Extended Q-Learning under Multiple Subtasks (복수의 부분작업을 처리할 수 있는 확정된 Q-Learning)

  • 오도훈;이현숙;오경환
    • Korean Journal of Cognitive Science
    • /
    • v.12 no.1_2
    • /
    • pp.25-34
    • /
    • 2001
  • 지식을 관리하는 것에 주력했던 기존의 인공지능 연구 방향은 동적으로 움직이는 외부 환경에서 적응할 수 있는 시스템 구축으로 변화하고 있다. 이러한 시스템의 기본 능력을 이루는 많은 학습방법 중에서 비교적 최근에 제시된 강화학습은 일반적인 사례에 적용하기 쉽고 동적인 환경에서 뛰어난 적응 능력을 보여주었다. 이런 장점을 바탕으로 강화학습은 에이전트 연구에 많이 사용되고 있다. 하지만, 현재까지 연구결과는 강화학습으로 구축된 에이전트로 해결할 수 있는 작업의 난이도에 한계가 있음을 보이고 있다. 특히, 복수의 부분 작업으로 구성되어 있는 작업을 처리할 경우에 기본의 강화학습 방법은 문제 해결에 한계를 보여주고 있다. 본 논문에서는 복수의 부분 작업으로 구성된 작업이 왜 처리하기 힘든가를 분석하고, 이런 문제를 처리할 수 있는 방안을 제안한다. 본 논문에서 제안하고 있는 EQ-Learning의 강화학습 방법의 대표적인 Q-Learning을 확장시켜 문제를 해결한다. 이 방법은 각각의 부분 작업 해결 방안을 학습시키고 그 학습 결과들의 적절한 순서를 찾아내 전체 작업을 해결한다. EQ-Learning의 타당성을 검증하기 위해 격자 공간에서 복수의 부분작업으로 구성된 미로 문제를 통하여 실험하였다.

  • PDF