DOI QR코드

DOI QR Code

Study on Characteristics of a Droplet in Two-dimensional Channel with Moving Bottom Wall

바닥면이 움직이는 이차원 채널 내 액적의 특성 연구

  • Kim, Hyung-Rak (School of Mechanical Engineering, Pusan National University) ;
  • Yoon, Hyun-Sik (Advanced Ship Engineering Research Center, Pusan National University) ;
  • Jeong, Hae-Kwon (Technical Research Laboratories, POSCO) ;
  • Ha, Man-Yeong (School of Mechanical Engineering, Pusan National University)
  • Received : 2010.10.18
  • Accepted : 2010.12.07
  • Published : 2011.02.10

Abstract

A two-dimensional immiscible droplet deformation phenomena on moving wall in a channel has been investigated by using lattice Boltzmann method involving two-phase model. The dependence of the deformation of the droplet with different sizes on the contact angle and the velocity of bottom wall has studied. When the bottom wall starts to move, the deformation of the droplet occurs. For the largest bottom wall velocity, eventually, the deformation of the droplet is classified into the three patterns according to the contact angle.

Keywords

References

  1. Cox, R. G., 1986, The dynamics of the spreading of liquids on a solid surface, J. Fluid Mech, Vol. 168, pp. 169-194. https://doi.org/10.1017/S0022112086000332
  2. Zhou, H. and Pozrikidis, C., 1994, Pressure-driven flow of suspensions of liquid drops, Phys. Fluid, Vol. 6, pp. 80-94. https://doi.org/10.1063/1.868048
  3. Borhan, A. and Mao, C. F., 1992, Effect of surfactants on the motion of drops through circular tubes, Phys. Fluid A, Vol. 4, pp. 2628- 2640. https://doi.org/10.1063/1.858452
  4. Tsai, T. M. and Miksis, M. J., 1994, Dynamics of a drops in a constricted capillary tube, J. Fluid Mech, Vol. 274, pp. 197-217. https://doi.org/10.1017/S0022112094002090
  5. Dussan, E. B., 1987, On the ability of drops to stick to surfaces of solids, J. Fluid Mech, Vol. 174, pp. 381-397. https://doi.org/10.1017/S002211208700017X
  6. Li, X. and Pozrikidis, 1996, Shear flow over a liquid drop adhering to a solid surface, J. Fluid Mech, Vol. 307, pp. 167-190. https://doi.org/10.1017/S0022112096000080
  7. Feng, J. Q. and Basaran, O. A., 1994, Shear flow over a translationally cylindrical bubble pinned on a slot in a plane wall, J. Fluid Mech, Vol. 275, pp. 351-378. https://doi.org/10.1017/S0022112094002399
  8. Dimitrakopoulos, P. and Higdon, J. J. L., 1997, Displacement of fluid droplets from solid surfaces in low-Reynolds-number shear flows, J. Fluid Mech, Vol. 336, pp. 351-378. https://doi.org/10.1017/S0022112096004788
  9. Dimitrakopoulos, P. and Higdon, J. J. L., 2001, On the displacement of three-dimensional fluid droplets adhering to a plane wall in viscous pressure-driven flows, J. Fluid Mech, Vol. 435, pp. 327-350.
  10. Dussan, E. B., 1976, The moving contact line :the slip boundary condition, F. Fluid Mech, Vol. 77, pp. 665-684. https://doi.org/10.1017/S0022112076002838
  11. Hocking, L. M., 1976, A moving fluid interface on a rough surface, J. Fluid Mech, Vol. 76, pp. 801-817. https://doi.org/10.1017/S0022112076000906
  12. Jansons, K. M., 1985, Moving contact lines on a two-dimensional rough surface, J. Fluid, Mech, Vol. 154, pp. 1-28. https://doi.org/10.1017/S0022112085001392
  13. Zhou, M. Y. and Sheng, P., 1990, Dynamics of immiscible fluid displacement in a capillary tube, Phys. Rev. Lett, Vol. 64, pp. 882-885. https://doi.org/10.1103/PhysRevLett.64.882
  14. Koplik, J., Banavar, J. R. and Willemsen, J. F., 1987, Molecular dynamics of a Poiseuille flow and moving contact lines, Phys. Rev. Lett, Vol. 60, pp. 1282-1285.
  15. Shikhmurzaev, Y. D., 1997, Moving contact lines in liquid/liquid/solid systems, J. Fluid Mech, Vol. 334, pp. 211-249. https://doi.org/10.1017/S0022112096004569
  16. Fan, L., Fang, H. and Lin, Z., 2001, Simulation of contact line dynamics in a two-dimensional capillary tube by the lattice Boltzmann model, Phys. Rev. E, Vol. 63, pp. 051603-1-6.
  17. Raiskinmaki, P., Koponen, A., Merikoski, J., and Timonen, J., 2000, Spreading dynamics of three-dimensional droplets by the lattice-Boltzmann method, Comput. Mater. Sci., Vol. 18, pp. 7-12. https://doi.org/10.1016/S0927-0256(99)00095-6
  18. Grubert, D. and Yeomans, J. M., 1999, Mesoscale modeling of contact line dynamics, Phys. Commun, Vol. 121, pp. 236-239.
  19. Schleizer, A. D. and Bonnecaze, R. T., 1999, Displacement of a two-dimensional immiscible droplet adhering to a wall in shear and pressure-driven flows, J. Fluid. Mech, Vol. 383, pp. 29-54. https://doi.org/10.1017/S0022112098003462
  20. Qinjun Kang, Dongxiao Zhang, Shiyi Chen, 2002, Displacement of a two-dimensinal immiscible droplet in a channel, Phys. Fluid, Vol. 14, pp. 3203-3214. https://doi.org/10.1063/1.1499125
  21. Hirt, C. W. and Nichols, B. D., 1981, Volume of fluid(VOF) method for the dynamics of free boundaries, J. Computational. Phys, Vol. 39, pp. 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  22. Takewaki, H., Nishiguchi, A. and Yabe, T., 1985, The cubic-interpolated pseudo particle (CIP) method, J. Comput. Phys, Vol. 61, pp. 261-268. https://doi.org/10.1016/0021-9991(85)90085-3
  23. Long Wu, Tsutahara, M., Kim, L. S., and Ha, M. Y., 2008, Three-dimensional lattice Boltzmann simulations of droplet formation in a cross-junction microchannel, Int. J. Multiphase Flow, Vol. 34, pp. 852-864. https://doi.org/10.1016/j.ijmultiphaseflow.2008.02.009