1 |
Shin, M.S., Byun, S.J., and Yoon, J.Y., 2010, "Numerical Investigation of Effect of Surface Roughness in a Microchannel," Trans. Korean Soc. Mech. Eng. B, Vol. 34, No. 5, pp. 539-546.
과학기술학회마을
DOI
ScienceOn
|
2 |
Shin, M.S., Byun, S.J., Kim, J.H., and Yoon, J.Y., 2011, "Numerical Investigation of Pollutant Dispersion in a Turbulent Boundary Layer by Using Lattice Boltzmann-Subgrid Model," Trans. Korean Soc. Mech. Eng. B, Vol. 35, No. 2, pp. 169-178.
과학기술학회마을
DOI
ScienceOn
|
3 |
Chen, S. and Doolen, G.D., 1998, "Lattice Boltzmann Method for Fluid Flows," Annual Review of Fluid Mechanics, Vol. 30, pp. 329-364.
DOI
ScienceOn
|
4 |
McNamara, G., and Alder, B., 1993, "Analysis of the Lattice Boltzmann Treatment of Hydrodynamics," Physica A, Vol. 194, pp. 218-228.
DOI
ScienceOn
|
5 |
Shan, X., 1997, "Simulation of Rayleigh-Bénard Convection Using a Lattice Boltzmann Method," Physical Review E, Vol. 55, pp. 2780-2788.
DOI
ScienceOn
|
6 |
Lallemand, P., and Luo, L.S., 2003, "Hybrid Finite-Difference Thermal Lattice Boltzmann Equation," International Journal of Modern Physics, Vol. 17, pp. 41-47.
DOI
ScienceOn
|
7 |
Treeck, C.V., Rank, E., Krafczyk, M., Tolke, J., and Nachtwey, B., 2006, "Extension of a Hybrid Thermal LBE Scheme for Large-Eddy Simulations Of Turbulent Convective Flows," Computers & Fluids, Vol. 35, pp. 863-871.
DOI
ScienceOn
|
8 |
Bhatnagar, P.L, Gross, E.P. and Krook, M., 1954, "A Model for Collision Processes in Gases. I : Small Amplitude Processes in Charged and Neutral One-Component System," Physical Review, Vol. 94, No. 5, pp. 511-525.
DOI
|
9 |
d'Humieres, D., 1992, "Generalized Lattice Boltzmann Equation," in Rarefied Gas Dynamics: Theory and Simulations, ed. by Shizgal, D, and Weaver, D.P, Progress in Astronautics and Aeronautics, Vol. 159, AIAA, Washington DC, pp. 450-458.
|
10 |
Hou, S., Zou, Q., Chen, S., Doolen, G., and Cogley, A.C., 1995, "Simulation of Cavity Flow by Lattice Boltzmann Method," Journal of Computational Physics, Vol. 118, pp. 329-347.
DOI
ScienceOn
|
11 |
Antonini, G., Gelus, M., Guiffant, G., and Zoulalian, A., 1981, "Simultaneous Momentum and Mass Transfer Characteristics in Surface-Driven Recirculating Flows," International Journal of Heat and Mass Transfer, Vol. 24, pp. 1313-1323.
DOI
ScienceOn
|
12 |
Burggraf, O.R., 1966, "Analytical and Numerical Studies of the Structure of Steady Separated Flows," Journal of Fluid Mechanics, Vol. 24, pp. 113-151.
DOI
|
13 |
Pan, F., and Acrivos, A,, 1967, "Steady Flows in a Rectangular Cavities," Journal of Fluid Mechanics, Vol. 28, pp. 643-655.
DOI
|
14 |
Shankar, P.N., and Deshpande, M.D, 2000, "Fluid Mechanics in the Driven Cavity," Annual Review of Fluid Mechanics, Vol. 32, pp. 93-136.
DOI
ScienceOn
|
15 |
Ghia, U., Ghia, K.N., and Shin, C.T., 1982, "High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method," Journal of Computational Physics, Vol. 48, pp. 387-411.
DOI
ScienceOn
|
16 |
Nguyen, N.-T., and Wu, Z., 2005, "Micromixers - A Review," Journal of Micromechanics and Microengineering, Vol.15, pp. R1-R16.
DOI
ScienceOn
|
17 |
Alkire, R.C, Deligianni, H., and Ju, J.B, 1990, "Effect of Fluid Flow on Convective Transport In Small Cavities," Journal of the Electrochaemical Society, Vol. 137, pp. 818-824.
DOI
|
18 |
Occhialini, J.M. and Higdon, J.J.L, 1992, "Convective Mass Transport from Rectangular Cavities in Viscous Flow," Journal of the Electrochaemical Society, Vol. 139, pp. 2845-2855.
DOI
|
19 |
Trevelyan, P.M.J., Kalliadasis, S., Merkin, J.H., and Scott, S.K., 2001, "Circulation and Reaction Enhancement of Mass Transport in Cavity," Chemical Engineering Science, Vol. 56, pp. 5177-5188.
DOI
ScienceOn
|