• Title/Summary/Keyword: 외기냉방

Search Result 61, Processing Time 0.036 seconds

A Study on Correlation of Outdoor Environmental Condition about Cooling Load (냉방부하에 영향을 미치는 외기 환경조건의 상관관계에 관한 연구)

  • Lee, Je-Myo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.11
    • /
    • pp.759-766
    • /
    • 2012
  • To estimate the cooling load for the following day, outdoor temperature and humidity are needed in hourly base. But the meteorological administration forecasts only maximum and minimum temperature. New methodology is proposed for predicting hourly outdoor temperature and humidity by using the forecasted maximum and minimum temperature. The correlations for normalized outdoor temperature and specific humidity has been derived from the weather data for five years at Seoul, Daejeon and Pusan. The correlations for normalized temperature are independent of date, while the correlations for specific humidity are linearly dependent on date. The predicted results show fairly good agreement with the measured data. The prediction program is also developed for hourly outdoor dry bulb temperature, specific humidity, dew point, relative humidity, enthalpy and specific volume.

A study on the energy efficient operation of economizer cycle control (외기냉방제어의 효율적인 운영에 관한 연구)

  • Lee, H.W.;Leigh, S.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.545-551
    • /
    • 1997
  • As the cooling energy requirement in an office building increases due to the increased internal heat gains, the effort to minimize the energy consumption through efficient operation of existing HVAC systems will be beneficial. In this study, one of the energy conserving efforts in an office building, operational strategies of Economizer Cycle Control have been investigated through DOE-2.1E computer simulation. The findings can be summarized : 1) Economizer Cycle Control saves energy throughout the year, 2) Econo-Limit-T must be applied seasonally based on the outside and return air conditions, 3) use of Enthalpy control is more energy efficient than that of Temperature control.

  • PDF

Comparison of Cooling-Energy Performance Depending on the Economizer-Control Methods in an Office Building (이코노마이저 제어 방법에 따른 사무소 건물의 냉방 에너지 성능 비교)

  • Son, Jeong-Eun;Hyun, In-Tak;Lee, Jea-Ho;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.432-439
    • /
    • 2015
  • Current building procedures seek to minimize external air supplies to reduce the energy consumption of air conditioning, resulting in a high dependency on mechanical ventilation. We therefore studied an economizer-cycle system, whereby the introduction of external air saves energy. We analyzed different economizer-control methods, addressing mixed-air temperatures and outdoor-air fractions according to outdoor-air temperatures; also, we analyzed the energy consumption of the three economizer-cycle control types using detailed EnergyPlus simulation modeling. A differential enthalpy control method showed a lower energy consumption range from 5.8% to 6.2% than that of other methods during the simulated period. A differential dry-bulb control method showed a 12.7% lower energy consumption than the no-economizer method in the intermediate period, but also showed 7.1% more energy consumption during the summer period. When latent heat was not removed due to high summer humidity, we found a significant level of resultant energy consumption.

A Study on Cooling Performance and Exergy Analysis of Desiccant Cooling System in Various Regeneration Temperature and Outdoor Air Conditions (재생온도와 외기조건 변화에 따른 제습 냉방시스템의 냉방 성능 및 엑서지 해석에 관한 연구)

  • Lee, Jang Il;Hong, Seok Min;Byun, Jae Ki;Choi, Young Don;Lee, Dae Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.413-421
    • /
    • 2014
  • Desiccant cooling system is an air conditioning system that uses evaporative cooler to cool air and it can perform cooling by using heat energy only without electrically charged cooler. Thus, it can solve many problems of present cooling system including the destruction of ozone layer due to the use of CFC[chloro fluoro carbon] affiliated refrigerants and increase of peak power during summer season. In this study, cooling performance and exergy analysis was conducted in order to increase efficiency of desiccant cooling system. Especially, using exergy analysis based on the second law of thermodynamics can resolve the issue related to system efficiency in a more fundamental way by analyzing the cause of exergy destruction both in whole system and each component. The purpose of this study is to evaluate COP[coefficient of performance], cooling capacity and exergy performance of desiccant cooling system incorporating a regenerative evaporative cooler in various regeneration temperature and outdoor air conditions.

Night Purge Control Strategies With Outdoor Air Temperature Conditions for Central Cooling System (중앙냉방시스템의 외기온도조건을 고려한 나이트 퍼지 제어방안에 관한 연구)

  • Hwang, Jin-Won;Ahn, Byung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6759-6765
    • /
    • 2015
  • In this study, the effects of control strategies of night-purge control system on control characteristics and energy consumption for central cooling system in building are researched by simulation. The start time and set-point temperature for night-purge control with outdoor temperature changes and building cold storage performance are obtained. The system analysis modelling is done by using TRNSYS program package, and the control performances with suggested night-purge control method are compared with the existing control ones. As a result, the suggested night-purge control method shows maximum 16.8% and 28.6% energy saving in comparison with existing control method and conventional one without night-purge control, respectively.

Energy Consumption Analysis based on Filter Differential Pressure when Adopting an Air-side Economizer System for a Data Center (데이터센터에 적용된 외기도입 냉방시스템에서 필터유형별 에너지 소비량 변화)

  • Park, Seonghyun;Seo, Janghoo;Jung, Yong-Ho;Chang, Hyun-Jae;Hwang, Seok-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.371-376
    • /
    • 2013
  • Recently, many studies related to reducing the energy consumption in data centers have been conducted. These studies have mainly focused on the air intake and exhaust system of a computer room air handling unit (CRAH) in the server room, diffuser type, suppression and discharge of the heat generated from the server, and the air-side economizer system. In this study, the energy consumption of the conventional central chilled water cooling system is compared with the energy consumption of the air-side economizer system. We also examined how changes of differential pressure by each filter have influenced energy consumption, using the power usage effectiveness (PUE). Results show that the PUE was improved, and energy consumption decreased, by applying the air-side economizer system.

Economic Evaluation of Air-side Economizer System for Data Center (데이터센터의 외기도입 냉방시스템 적용에 따른 경제성 평가)

  • Park, Seonghyun;Seo, Janghoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.4
    • /
    • pp.145-150
    • /
    • 2014
  • Many studies are being conducted with the aim of reducing the energy consumption in data centers, which are one of the highest consumers of energy. The use of an air-side economizer system that uses external air during intermediate and winter seasons is being considered for reducing the energy consumption of air conditioners. In this study, using the energy simulation, we evaluated the energy performance of a central chilled water cooling system and air-side economizer system in domestic data centers. Further, the cost-effectiveness of the air-side economizer was analyzed through Life-Cycle Cost Analysis. The results showed that with the use of air-side economizer systems, the energy costs increased as the applied filter grade increased; however, unlike existing central chilled water systems, it would break even within 2 years.