DOI QR코드

DOI QR Code

A Study on Cooling Performance and Exergy Analysis of Desiccant Cooling System in Various Regeneration Temperature and Outdoor Air Conditions

재생온도와 외기조건 변화에 따른 제습 냉방시스템의 냉방 성능 및 엑서지 해석에 관한 연구

  • 이장일 (고려대학교 기계공학부) ;
  • 홍석민 (고려대학교 기계공학부) ;
  • 변재기 (고려대학교 기계공학부) ;
  • 최영돈 (고려대학교 기계공학부) ;
  • 이대영 (한국과학기술연구원 에너지메카닉스연구센터)
  • Received : 2013.12.05
  • Accepted : 2014.02.25
  • Published : 2014.05.01

Abstract

Desiccant cooling system is an air conditioning system that uses evaporative cooler to cool air and it can perform cooling by using heat energy only without electrically charged cooler. Thus, it can solve many problems of present cooling system including the destruction of ozone layer due to the use of CFC[chloro fluoro carbon] affiliated refrigerants and increase of peak power during summer season. In this study, cooling performance and exergy analysis was conducted in order to increase efficiency of desiccant cooling system. Especially, using exergy analysis based on the second law of thermodynamics can resolve the issue related to system efficiency in a more fundamental way by analyzing the cause of exergy destruction both in whole system and each component. The purpose of this study is to evaluate COP[coefficient of performance], cooling capacity and exergy performance of desiccant cooling system incorporating a regenerative evaporative cooler in various regeneration temperature and outdoor air conditions.

제습 냉방시스템은 증발식 냉각기를 이용하여 공조 공기를 냉각하는 시스템으로 전기구동 냉각기 없이 열에너지만으로 냉방 공급을 수행할 수 있다. 따라서, CFC 계열의 냉매 사용에 의한 오존층 파괴 및 하절기 냉각기 가동에 의한 첨두 전력부하의 증가 등 기존의 냉방시스템이 야기하는 여러 가지 문제점들을 해결할 수 있다. 본 연구에서는 제습 냉방시스템의 효율을 향상시키기 위해 냉방 성능과 엑서지 해석을 수행하였다. 특히 열역학 제2법칙에 근거한 엑서지 해석을 이용할 경우 전체시스템과 구성요소에서의 엑서지 파괴의 원인을 분석함으로써 시스템의 효율과 관련된 주제에 대하여 더욱 본질적인 측면에서 접근할 수 있다. 본 연구의 목적은 재생온도와 외기조건의 변화에 따른 재생 증발식 냉각기를 이용한 제습 냉방시스템의 성능계수, 냉방용량, 엑서지 성능을 평가하는 것이다.

Keywords

References

  1. Daou, K., Wang, R. Z. and Xia, Z. Z., 2006, "Desiccant Cooling Air Conditioning: A Review," Renewable and Sustainable Energy Reviews, Vol. 10, pp. 55-77. https://doi.org/10.1016/j.rser.2004.09.010
  2. Lee, J. W., Lee, D. Y. and Kang, B. H., 2004, "Cycle Simulation of a Desiccant Cooling System with a Regenerative Evaporative Cooler," Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 16, No. 6, pp. 566-573.
  3. Pons, M. and Kodama, A., 2000, "Entropic Analysis of Adsorption Open Cycles for Air Conditioning. Part 1: First and Second Law Analyses," International Journal of Energy Research, Vol. 24, Issue 3, pp. 251-262. https://doi.org/10.1002/(SICI)1099-114X(20000310)24:3<251::AID-ER578>3.0.CO;2-U
  4. Kodama, A., Jin, W., Goto, M., Hirose, T. and Pons, M., 2000, "Entropic Analysis of Adsorption Open Cycles for Air Conditioning. Part 2: Interpretation of Experimental Data," International Journal of Energy Research, Vol. 24, Issue 3, pp. 263-278. https://doi.org/10.1002/(SICI)1099-114X(20000310)24:3<263::AID-ER579>3.0.CO;2-M
  5. Chang, Y. S. and Lee, D. Y., 2007, "Effects of Individual Components on the System Performance in a Desiccant Cooling System," Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 19, No. 10, pp. 687-694.
  6. Moon, H. K. and Lee, D. Y., 2008, "Cooling Performance of a Counterflow Regenerative Cooler with Finned Channels," Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 20, No. 7, pp. 462-469.
  7. Lee, D. Y. and Chang, Y. S., 2009, "Performance Characteristic of the Desiccant Cooling System in Various Outdoor and Load Conditions," Proceedings of the SAREK Summer Annual Conference, pp. 623-628.
  8. Dincer, I. and Rosen, M. A., 2013, "Exergy : Energy, Environment and Sustainable Development," Elsevier, San Diego, pp. 83-100.