• Title/Summary/Keyword: 완전장 cDNA

Search Result 8, Processing Time 0.02 seconds

Construction of Full-Lenth cDNA Library from Seosan 6-pieces Gallic and cDNA Cloning of Allinase and Lectin Genes (서산 6쪽마늘의 Full-lenth cDNA library 구축 및 allinase와 lectin 유전자의 cDNA 클로닝)

  • Lee, Mi-Ok;Kim, Hae-Kyung;Lee, Jin-Sung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.270-272
    • /
    • 2007
  • 본 연구는 서산 6쪽 마늘로부터 완전장 유전자 은행의 제작과 이를 통해서 확보된 1,000여개 재조합 클론에 대한 염기서열 결과를 web-based database를 통한 상동성 분석으로 부터 서산 마늘의 발현 유전자에 대한 생물정보학적 분석에 관해 것이며 본 연구로 부터 마늘의 대표적 생리활성 물질인 allicin의 생성에 관여하는 효소인 allinase의 cDNA를 클로닝 및 완전 염기서열을 해석하였으며 allinase 유전자의 genomic structure 에 대한 일부의 결과를 확보하였다. 또한 다양한 생물종에서 연구 되어지고 있는 생리활성 단백질인 lectin 유전자 cDNA를 클로닝하여 완전 염기서멸을 분석하고, 6xHis Tag올 통한 재조합 단백질을 대장균에서 E.coli에서 발현시켰다.

  • PDF

Molecular Cloning of cDNA Encoding a Putative Eugenol Synthase in Tomato (Solanum lycopersicum 'Micro-Tom') and Prediction of 3D Structure and Physiochemical Properties (토마토 'Micro-Tom' 과실의 eugenol synthase 유전자 클로닝, 단백질의 3차 구조 및 생리화학적 특성 예측)

  • Kang, Seung-Won;Seo, Sang-Gyu;Lee, Tai-Ho;Lee, Gung-Pyo
    • Journal of agriculture & life science
    • /
    • v.46 no.4
    • /
    • pp.9-20
    • /
    • 2012
  • Eugenol is a volatile compound synthesized by eugenol synthase in various plants and belongs to phenylpropene compounds. However, characteristics of eugenol synthase in tomato has not been known. Therefore, we cloned a full length cDNA of a putative eugenol synthase from tomato 'Micro-Tom' using rapid amplification of cDNA ends (RACE) technique and named a clone SlEGS. Open reading frame of SlEGS was 921bp long and its deduced amino acid sequence was 307bp. The BLAST analysis indicated that SlEGS shared high similarity with PhEGS1 (67.1%) and CbEGS2 (69.4%). Amino acid composition of SlEGS was determined by CLC genomics workbench tool and 3D structure of SlEGS was constructed by homology modeling using Swiss-PDB viewer and validated using PROCHECK and ProSA-web tool. In addition, the physiochemical properties of SlEGS was evaluated using ExPASy's ProtParam tool. Molecular weight was 33.93kDa and isoelectric point was 5.85 showing acidic nature. Other properties such as extinction coefficient, instability index, aliphatic index, and grand average hydropathy was also analyzed.

Characterization of a Drought-Tolerance Gene, BrDSR, in Chinese Cabbage (배추의 건조 저항성 유전자, BrDSR의 기능 검정)

  • Yu, Jae-Gyeong;Lee, Gi-Ho;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.102-111
    • /
    • 2016
  • The goal of this study was to characterize the BrDSR (Drought Stress Resistance in B. rapa) gene and to identify the expression network of drought-inducible genes in Chinese cabbage under drought stress. Agrobacterium-mediated transformation was conducted using a B. rapa inbred line ('CT001') and the pSL100 vector containing the BrDSR full length CDS (438 bp open reading frame). Four transgenic plants were selected by PCR and the expression level of BrDSR was approximately 1.9-3.4-fold greater than that in the wild-type control under drought stress. Phenotypic characteristics showed that BrDSR over-expressing plants were resistant to drought stress and showed normal growth habit. To construct a co-expression network of drought-responsive genes, B. rapa 135K cDNA microarray data was analyzed to identify genes associated with BrDSR. BrDSR was directly linked to DARK INDUCIBLE 2 (DIN2, AT3G60140) and AUTOPHAGY 8H (ATG8H, AT3G06420) previously reported to be leaf senescence and autophagy-related genes in plants. Taken together, the results of this study indicated that BrDSR plays a significant role in enhancement of tolerance to drought conditions.

Expression of Prolactin Receptor mRNA and Blood Physiological Responses to Salinity Changes in the Black Porgy Acanthopagrus schlegeli (염분 변화에 따른 감성돔 Acanthopagrus schlegeli의 Prolactin Receptor(PRLR) mRNA 발현 및 생리적 반응)

  • An, Kwang-Wook;Min, Byung-Hwa;Park, In-Seok;Heo, Youn-Seong; Choi, Yong-Ki;Jo, Pil-Gue;Chang, Young-Jin;Choi, Cheol-Young
    • Journal of Aquaculture
    • /
    • v.21 no.2
    • /
    • pp.63-69
    • /
    • 2008
  • We isolated complementary DNA(cDNA) encoding prolactin receptor(PRLR) from gill of black porgy Acanthopagrus schlegeli. Its PRLR cDNA consists of 1,611 base pairs and encodes the protein of 536 amino acids. To investigate the osmoregulatory abilities of black porgy in different salinities(35, 10 and 0 psu), we examined the expression of PRLR mRNA in osmoregulatory organs(gill, kidney and intestine) using reverse transcription(RT)-PCR. In gill and intestine, PRLR mRNA levels were high in 10 psu, and then decreased in 0 psu, but there is no changes in kidney. Also, plasma osmolality, $Na^+\;and\;Cl^-$ levels decreased during the experimental period. These results suggest that PRLR plays an important role in hormonal regulation in osmoregulatory organs during freshwater acclimation, thereby improving the hyper-osmoregulatory ability of black porgy in hypoosmotic environments.

Isolation and Functional Identification of BrDSR, a New Gene Related to Drought Tolerance Derived from Brassica rapa (배추 유래 신규 건조 저항성 관련 유전자, BrDSR의 분리 및 기능 검정)

  • Yu, Jae-Gyeong;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.575-584
    • /
    • 2015
  • Drought stress is a crucial environmental factor determining crop survival and productivity. The goal of this study was to clearly identify a new drought stress-tolerance gene in Brassica rapa. From KBGP-24K microarray data with the B. rapa ssp. pekinensis inbred line 'Chiifu' under drought stress treatment, a gene which was named BrDSR (B. rapa Drought Stress Resistance) was chosen among 738 drought-responsive unigenes. BrDSR function has yet to be determined, but its expression was induced over 6-fold by drought. To characterize BrDSR, the gene was isolated from B. rapa inbred line 'CT001' and found to contain a 438-bp open reading frame encoding a 145 amino acid protein. The full-length cDNA of BrDSR was used to construct an over-expression vector, 'pSL100'. Tobacco transformation was then conducted to analyze whether the BrDSR gene can increase drought tolerance in plants. The BrDSR expression level in T1 transgenic tobacco plants selected via PCR and DNA blot analyses was up to 2.6-fold higher than non-transgenic tobacco. Analysis of phenotype clearly showed that BrDSR-expressing tobacco plants exhibited more tolerance than wild type under 10 d drought stress. Taking all of these findings together, we expect that BrDSR functions effectively in plant growth and survival of drought stress conditions.

Characterization and Gene Co-expression Network Analysis of a Salt Tolerance-related Gene, BrSSR, in Brassica rapa (배추에서 염 저항성 관련 유전자, BrSSR의 기능 검정 및 발현 네트워크 분석)

  • Yu, Jae-Gyeong;Lee, Gi-Ho;Park, Ji-Hyun;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.845-852
    • /
    • 2014
  • Among various abiotic stress factors, soil salinity decreases the photosynthetic rate, growth, and yield of plants. Recently, many genes have been reported to enhance salt tolerance. The objective of this study was to characterize the Brassica rapa Salt Stress Resistance (BrSSR) gene, of which the function was unclear, although the full-length sequence was known. To characterize the role of BrSSR, a B. rapa Chinese cabbage inbred line ('CT001') was transformed with pSL94 vector containing the full length BrSSR cDNA. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that the expression of BrSSR in the transgenic line was 2.59-fold higher than that in the wild type. Analysis of phenotypic characteristics showed that plants overexpressing BrSSR were resistant to salinity stress and showed normal growth. Microarray analysis of BrSSR over-expressing plants confirmed that BrSSR was strongly associated with ERD15 (AT2G41430), a gene encoding a protein containing a PAM2 motif (AT4G14270), and GABA-T (AT3G22200), all of which have been associated with salt tolerance, in the co-expression network of genes related to salt stress. The results of this study indicate that BrSSR plays an important role in plant growth and tolerance to salinity.

Antimicrobial Activity of Prunus mume and Schizandra chinenis H-20 Extracts and Their Effects on Quality of Functional Kochujang (매실과 오미자 추출물의 항균성과 기능성 고추장의 제조)

  • Kim, Young-Sook;Park, Young-Sun;Lim, Mu-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.893-897
    • /
    • 2003
  • Prunus mume and Schizandra chinenis H-20 were found to have antibacterial properties against B. subtilis, S. aureus, E. coli KCCM 11591, and P. aeruginosa KCTC 1750. Prunus mume and S. chinenis H-20 showed clear zones of $6{\sim}10\;mm$ for the microbes used, while jujube, Lycii fructus and pine needle showed clear zones of $0.1{\sim}1\;mm$. In the experiment on DNA action, S. chinenis H-20 completely inhibited the growth of B. subtilis, S. aureus, and E. coli KCCM 11591 in the beginning of cultivation and even when added 5 hr after initiating cultivation. Moreover, as the microbes of about $l0^8$ cfu were shown by this test to have strong antibacterial power, they will most likely have an effect in vivo. Prunus mume and S. chinenis H-20 extracts were added to kochujang and fermented at $30^{\circ}C$ for 35 days. Prunus mume kochujang showed a sensory score of 4.29 (somewhat good), suggesting that Prunus mume can he utilized as a functional food ingredient.

Present and Prospect of Plant Genomics in Japan (일본의 식물유전체 연구현황 및 전망)

  • Yoon, Ung-Han;Lee, Jeonghwa;Lee, Gang-Seob;Kim, Young-Mi;Ji, Hyeon-So;Kim, Tae-Ho
    • Journal of the Korean Society of International Agriculture
    • /
    • v.23 no.5
    • /
    • pp.560-569
    • /
    • 2011
  • In Japan, plant genomics research is mainly leaded by the national research institutes. The various structural studies such as rice genome has allowed researchers to analyze useful traits, and to focus their commercialization. With aims to facilitate structural and functional study in plant genome, NIAS (National Institute of Agrobiological Sciences) constructed Poaceae genome DB and RIKEN (Rikagaku Kenkyusho) built DB for Arabidopsis genome and plant full-length cDNA. NIG (National Institute of Genetics) constructed a national biological resources DB (National Bio Resource Project). This compiling DB provides a variety of genome-related research materials for researchers in the field. Recently, as an effort to resolve global issues of food supply and environmental problems, New Agri-genome Project has been performed aiming to develop an innovative agricultural technologies for the quantity, disease resistance and identifying useful genes related to environmental problems. In addition, in order to improve agricultural productivity in developing countries, JIRCAS assisted technical supports for the plant genome research and developed NERICA rice, which is suitable for African area. Such these approaches are expected to contribute to solving the global issues about food, energy and environment in the world.