DOI QR코드

DOI QR Code

Characterization of a Drought-Tolerance Gene, BrDSR, in Chinese Cabbage

배추의 건조 저항성 유전자, BrDSR의 기능 검정

  • Yu, Jae-Gyeong (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Lee, Gi-Ho (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Park, Young-Doo (Department of Horticultural Biotechnology, Kyunghee University)
  • 유재경 (경희대학교 생명과학대학 원예생명공학과) ;
  • 이기호 (경희대학교 생명과학대학 원예생명공학과) ;
  • 박영두 (경희대학교 생명과학대학 원예생명공학과)
  • Received : 2015.06.09
  • Accepted : 2015.07.11
  • Published : 2016.02.29

Abstract

The goal of this study was to characterize the BrDSR (Drought Stress Resistance in B. rapa) gene and to identify the expression network of drought-inducible genes in Chinese cabbage under drought stress. Agrobacterium-mediated transformation was conducted using a B. rapa inbred line ('CT001') and the pSL100 vector containing the BrDSR full length CDS (438 bp open reading frame). Four transgenic plants were selected by PCR and the expression level of BrDSR was approximately 1.9-3.4-fold greater than that in the wild-type control under drought stress. Phenotypic characteristics showed that BrDSR over-expressing plants were resistant to drought stress and showed normal growth habit. To construct a co-expression network of drought-responsive genes, B. rapa 135K cDNA microarray data was analyzed to identify genes associated with BrDSR. BrDSR was directly linked to DARK INDUCIBLE 2 (DIN2, AT3G60140) and AUTOPHAGY 8H (ATG8H, AT3G06420) previously reported to be leaf senescence and autophagy-related genes in plants. Taken together, the results of this study indicated that BrDSR plays a significant role in enhancement of tolerance to drought conditions.

본 연구의 목적은 BrDSR(Drought Stress Resistance in B. rapa) 유전자의 기능을 명확히 밝히고, 배추에서 건조 스트레스 반응 유전자들을 분석하는데 있다. 내혼계배추('CT001')와 BrDSR 완전장(438bp의 오픈리딩프레임)을 지닌 pSL100 vector를 재료로 아그로박테리아를 이용한 배추 형질전환을 수행하였다. PCR 분석을 통해 4개체의 형질전환체를 확보하였고, 이들의 BrDSR 발현량은 건조 스트레스 조건에서 비형질전환체 대비 약 1.9-3.4배 정도 더 큰 것으로 분석되었다. 또한 표현형 분석에서도 BrDSR이 과발현된 형질전환체들은 건조 스트레스에 저항성을 보이며 정상적인 생장을 하였다. 기 구축된 건조 스트레스 반응 유전자의 상호발현 네트워크를 기반으로 BrDSR과 밀접한 관련이 있는 유전자들을 분석하기 위해 B. rapa 135K cDNA microarray 데이터를 분석하였다. 그 결과, 환경 스트레스와 관련하여 식물체에서 잎의 노화와 자가소화에 관련된 것으로 보고된 'dark inducible 2(DIN2, AT3G60140)'와 'autophagy 8h(ATG8H, AT3G06420)' 유전자가 확인되었다. 위 결과들을 근거로 BrDSR 유전자는 건조 스트레스에 대한 저항성 향상에 중요한 역할을 할 것으로 판단되었다.

Keywords

References

  1. Agarwal, P.K., P. Agarwal, M.K. Reddy, and S.K. Sopory. 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25:1263-1274. https://doi.org/10.1007/s00299-006-0204-8
  2. Baena-Gonzalez, E., F. Rolland, J.M. Thevelein, and J. Sheen. 2007. A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938-942. https://doi.org/10.1038/nature06069
  3. Benjamini, Y. and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Statist. Soc. 57:289-300.
  4. Chen, L., Q.Q. Wang, L. Zhou, F. Ren, D.D. Li, and X.B. Li. 2013. Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol. Biol. Rep. 40:4759-4967. https://doi.org/10.1007/s11033-013-2572-9
  5. Chen, W., N.J. Provart, J. Glazebrook, F. Katagiri, H.S. Chang, T. Eulgem, F. Mauch, S. Luan, G. Zou, S.A. Whitham, P.R. Budworth, Y. Tao, Z. Xie, X. Chen, S. Lam, J.A. Kreps, J.F. Harper, A. Si-Ammour, B. Mauch-Mani, M. Heinlein, K. Kobayashi, T. Hohn, J.L. Dangl, X. Wang, and T. Zhu. 2002. Expression profile matrix of Arabidopsis transcription factor genes implies their putative functions in response to environmental stresses. Plant Cell 14:559-574. https://doi.org/10.1105/tpc.010410
  6. de Silva, K., B. Laska, C. Brown, H.W. Sederoff, and M. Khodakovskaya. 2011. Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): a novel repressor of abiotic stress response. J. Exp. Bot. 62:2679-289. https://doi.org/10.1093/jxb/erq468
  7. Devarenne, T.P. 2011. The plant cell death suppressor Adi3 interacts with the autophagic protein Atg8h. Biochem. Biophys. Res. Commun. 412:699-703. https://doi.org/10.1016/j.bbrc.2011.08.031
  8. Frey, A., D. Effroy, V. Lefebvre, M. Seo, F. Perreau, A. Berger, J. Sechet, A. To, H.M. North, and A. Marion-Poll. 2012. Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. Plant J. 70:501-512. https://doi.org/10.1111/j.1365-313X.2011.04887.x
  9. Jaglo-Ottosen, K.R., S.J. Gilmour, D.G. Zarka, O. Schabenberger, and M.F. Thomashow. 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104-106. https://doi.org/10.1126/science.280.5360.104
  10. Kasuga, M., Q. Liu, S. Miura, K. Yamaguchi-Shinozaki, and K. Shinozaki. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17:287-291. https://doi.org/10.1038/7036
  11. Kim, J.S., J. Kim, T.H. Lee, K.M. Jun, T.H. Kim, Y.H. Kim, H.M. Park, J.S. Jeon, G. An, U.H. Yoon, B.H. Nahm, and Y.K. Kim. 2012. FSTVAL: a new web tool to validate bulk flanking sequence tags. Plant Methods 8:19. https://doi.org/10.1186/1746-4811-8-19
  12. Kreps, J.A., Y. Wu, H.S. Chang, T. Zhu, X. Wang, and J.F. Harper. 2002. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130:2129-2141. https://doi.org/10.1104/pp.008532
  13. Leckie, C.P., M.R. McAinsh, G.J. Allen, D. Sanders, and A.M. Hetherington. 1998. Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 95:15837-15842. https://doi.org/10.1073/pnas.95.26.15837
  14. Lee, S.B., S.J. Jung, Y.S. Go, H.U. Kim, J.K. Kim, H.J. Cho, O.K. Park, and M.C. Suh. 2009. Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. Plant J. 60:462-475. https://doi.org/10.1111/j.1365-313X.2009.03973.x
  15. Maleck, K., A. Levine, T. Eulgem, A. Morgan, J. Schmid, K.A. Lawton, J.L. Dangl, and R.A. Dietrich. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat. Genet. 26:403-410. https://doi.org/10.1038/82521
  16. Martinez-Atienza, J., X.Y. Jiang, B. Garciadeblas, I. Mendoza, J.K. Zhu, J.M. Pardo, and F.J. Quintero. 2007. Conservation of the salt overly sensitive pathway in rice. Plant Physiol. 143:1001-1012.
  17. Mehterov, N., S. Balazadeh, J. Hille, V. Toneva, B. Mueller-Roeber, and T. Gechev. 2012. Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multiparallel quantitative real-time PCR analysis of ROS marker and antioxidant genes. Plant Physiol. Biochem. 59:20-29. https://doi.org/10.1016/j.plaphy.2012.05.024
  18. Pantin, F., F. Monnet, D. Jannaud, J.M. Costa, J. Renaud, B. Muller, T. Simonneau, and B. Genty. 2013. The dual effect of abscisic acid on stomata. New Phytol. 197:65-72. https://doi.org/10.1111/nph.12013
  19. Rabbani, M.A., K. Maruyama, H. Abe, M.A. Khan, K. Katsura, Y. Ito, K. Yoshiwara, M. Seki, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2003. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133:1755-1767. https://doi.org/10.1104/pp.103.025742
  20. Saijo, Y., S. Hata, J. Kyozuka, K. Shimamoto, and K. Izui. 2000. Over-expression of a single $Ca^{2+}$-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23:319-327. https://doi.org/10.1046/j.1365-313x.2000.00787.x
  21. Sakamoto, W. and T. Takami. 2014. Nucleases in higher plants and their possible involvement in DNA degradation during leaf senescence. J. Exp. Bot. 65:3835-3843. https://doi.org/10.1093/jxb/eru091
  22. Seki, M., M. Narusaka, H. Abe, M. Kasuga, K. Yamaguchi-Shinozaki, P. Carninci, Y. Hayashizaki, and K. Shinozaki. 2001. Monitoring the expression pattern of 1,300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61-72. https://doi.org/10.1105/tpc.13.1.61
  23. Tang, R.J., H. Liu, Y. Bao, Q.D. Lv, L. Yang, and H.X. Zhang. 2010. The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol. Biol. 74:367-380. https://doi.org/10.1007/s11103-010-9680-x
  24. Thiel, J., H. Rolletschek, S. Friedel, J.E. Lunn, T.H. Nguyen, R. Feil, H. Tschiersch, M. Muller, and L. Borisjuk. 2011. Seed-specific elevation of non-symbiotic hemoglobin AtHb1: beneficial effects and underlying molecular networks in Arabidopsis thaliana. BMC Plant Biol. 11:48. https://doi.org/10.1186/1471-2229-11-48
  25. Wang, X., H. Wang, J. Wang, R. Sun, J. Wu, S. Liu, Y. Bai, J.H. Mun, I. Bancroft, F. Cheng, S. Huang, X. Li, W. Hua, J. Wang, X. Wang, M. Freeling, J.C. Pires, A.H. Paterson, B. Chalhoub, B. Wang, A. Hayward, A.G. Sharpe, B.S. Park, B. Weisshaar, B. Liu, B. Li, B. Liu, C. Tong, C. Song, C. Duran, C. Peng, C. Geng, C. Koh, C. Lin, D. Edwards, D. Mu, D. Shen, E. Soumpourou, F. Li, F. Fraser, G. Conant, G. Lassalle, G.J. King, G. Bonnema, H. Tang, H. Wang, H. Belcram, H. Zhou, H. Hirakawa, H. Abe, H. Guo, H. Wang, H. Jin, I.A. Parkin, J. Batley, J.S. Kim, J. Just, J. Li, J. Xu, J. Deng, J.A. Kim, J. Li, J. Yu, J. Meng, J. Wang, J. Min, J. Poulain, J. Wang, K. Hatakeyama, K. Wu, L. Wang, L. Fang, M. Trick, M.G. Links, M. Zhao, M. Jin, N. Ramchiary, N. Drou, P.J. Berkman, Q. Cai, Q. Huang, R. Li, S. Tabata, S. Cheng, S. Zhang, S. Zhang, S. Huang, S. Sato, S. Sun, S.J. Kwon, S.R. Choi, T.H. Lee, W. Fan, X. Zhao, X. Tan, X. Xu, Y. Wang, Y. Qiu, Y. Yin, Y. Li, Y. Du, Y. Liao, Y. Lim, Y. Narusaka, Y. Wang, Z. Wang, Z. Li, Z. Wang, Z. Xiong, and Z. Zhang. 2011. The genome of the mesopolyploid crop species Brassica rapa. Nat. Genet. 43:1035-1039. https://doi.org/10.1038/ng.919
  26. Yu, J.G. and Y.D. Park. 2015. Isolation and functional identification of a new gene, BrDSR, related to drought tolerance derived from Brassica rapa. Korean J. Hortic. Sci. Technol. 33:575-584. https://doi.org/10.7235/hort.2015.15056
  27. Yu, J.G., G.H. Lee, J.S. Kim, E.J. Shim, and Y.D. Park. 2010. An insertional mutagenesis system for analyzing the Chinese cabbage genome using Agrobacterium T-DNA. Mol. Cells 29:267-275. https://doi.org/10.1007/s10059-010-0013-3
  28. Yu, J.G., G.H. Lee, S.C. Lee, and Y.D. Park. 2014. Gene expression and phenotypic analyses of transgenic Chinese cabbage over-expressing the cold tolerance gene, BrCSR. Hortic. Environ. Biotechnol. 55:415-422. https://doi.org/10.1007/s13580-014-0054-1
  29. Zhao, J., Z. Sun, J. Zheng, X. Guo, Z. Dong, J. Huai, M. Gou, J. He, Y. Jin, J. Wang, and G. Wang. 2009. Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Mol. Biol. 69:661-674. https://doi.org/10.1007/s11103-008-9445-y
  30. Zhu, L., J. Guo, J. Zhu, and C. Zhou. 2014. Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis. Plant Physiol. Biochem. 75:24-235. https://doi.org/10.1016/j.plaphy.2013.11.028
  31. Zhu, T., P. Budworth, B. Han, D. Brown, H.S. Chang, Z. Zou, and X. Wang. 2001. Towards elucidating global gene expression in developing Arabidopsis: parallel analysis of 8,300 genes. Plant Physiol. Biochem. 39:221-242. https://doi.org/10.1016/S0981-9428(00)01234-1