DOI QR코드

DOI QR Code

Characterization and Gene Co-expression Network Analysis of a Salt Tolerance-related Gene, BrSSR, in Brassica rapa

배추에서 염 저항성 관련 유전자, BrSSR의 기능 검정 및 발현 네트워크 분석

  • Yu, Jae-Gyeong (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Lee, Gi-Ho (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Park, Ji-Hyun (Department of Horticultural Biotechnology, Kyunghee University) ;
  • Park, Young-Doo (Department of Horticultural Biotechnology, Kyunghee University)
  • 유재경 (경희대학교 생명과학대학 원예생명공학과) ;
  • 이기호 (경희대학교 생명과학대학 원예생명공학과) ;
  • 박지현 (경희대학교 생명과학대학 원예생명공학과) ;
  • 박영두 (경희대학교 생명과학대학 원예생명공학과)
  • Received : 2014.03.06
  • Accepted : 2014.04.29
  • Published : 2014.12.31

Abstract

Among various abiotic stress factors, soil salinity decreases the photosynthetic rate, growth, and yield of plants. Recently, many genes have been reported to enhance salt tolerance. The objective of this study was to characterize the Brassica rapa Salt Stress Resistance (BrSSR) gene, of which the function was unclear, although the full-length sequence was known. To characterize the role of BrSSR, a B. rapa Chinese cabbage inbred line ('CT001') was transformed with pSL94 vector containing the full length BrSSR cDNA. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that the expression of BrSSR in the transgenic line was 2.59-fold higher than that in the wild type. Analysis of phenotypic characteristics showed that plants overexpressing BrSSR were resistant to salinity stress and showed normal growth. Microarray analysis of BrSSR over-expressing plants confirmed that BrSSR was strongly associated with ERD15 (AT2G41430), a gene encoding a protein containing a PAM2 motif (AT4G14270), and GABA-T (AT3G22200), all of which have been associated with salt tolerance, in the co-expression network of genes related to salt stress. The results of this study indicate that BrSSR plays an important role in plant growth and tolerance to salinity.

다양한 비생물적 스트레스 중 토양 염 집적은 식물의 광합성 효율, 생장 및 수확량의 감소를 초래한다. 최근 염 저항성 향상을 위한 많은 유전자들이 보고되고 있다. 본 연구의 목적은 형질전환 배추를 이용하여 아직 기능이 밝혀져 있지 않지만 완전장이 보고된 Brassica rapa Salt Stress Resistance(BrSSR) 유전자의 기능을 검정하는 것이다. BrSSR의 생리적 역할을 분석하기 위해, BrSSR의 과발현 vector인 pSL94 vector를 이용하여 내혼계 배추('CT001')를 형질전환하였다. Quantitative real-time RT-PCR 분석에서 형질전환체의 BrSSR 발현량은 대조군 대비 2.59배까지 증가하였다. 한편, 염 처리 후 표현형 분석에서 BrSSR이 과발현된 형질전환체들이 정상적인 생장을 보여줌으로써 염 스트레스에 내성을 가지는 것을 확인할 수 있었다. Microarray 분석을 통해 구축된 염 스트레스 저항성 관련 유전자들의 발현 네트워크 상에서 BrSSR은 기존에 염 저항성 관련 유전자로 보고되어 있는 ERD15(AT2G41430), protein containing PAM2(AT4G14270), GABA-T(AT3G22200)와 매우 밀접하게 연결되어 있는 것으로 분석되었다. 위 결과들을 바탕으로 BrSSR은 염 스트레스 발생 시 식물의 생장 및 저항성에 관련된 중요한 역할을 하는 것으로 판단된다.

Keywords

References

  1. Bertorello, A.M. and J.K. Zhu. 2009. SIK1/SOS2 networks: Decoding sodium signals via calcium-responsive protein kinase pathways. Pflugers Arch. 458:613-619. https://doi.org/10.1007/s00424-009-0646-2
  2. Deng, X., W. Hu, S. Wei, S. Zhou, F. Zhang, J. Han, L. Chen, Y. Li, J. Feng, B. Fang, Q. Luo, S. Li, Y. Liu, G. Yang, and G. He. 2013. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS One 8:e69881. https://doi.org/10.1371/journal.pone.0069881
  3. Fait, A., H. Fromm, D. Walter, G. Galili, and A.R. Fernie. 2008. Highway or byway: The metabolic role of the GABA shunt in plants. Trends Plant Sci. 13:14-19.
  4. Flowers, T.J. and A.R. Yeo. 1995. Breeding for salinity resistance in crop plants: Where next? Aust. J. Plant Physiol. 22:875-884. https://doi.org/10.1071/PP9950875
  5. Gong, Z., H. Koiwa, M.A. Cushman, A. Ray, D. Bufford, S. Kore-eda, T.K. Matsumoto, J. Zhu, J.C. Cushman, R.A. Bressan, and P.M. Hasegawa. 2001. Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiol. 126:363-375. https://doi.org/10.1104/pp.126.1.363
  6. Halfter, U., M. Ishitani, and J.K. Zhu. 2000. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. USA 97:3735-3740. https://doi.org/10.1073/pnas.97.7.3735
  7. Hernandez, J.A., M.A. Ferrer, A. Jimenez, A.R. Barcelo, and F. Sevilla. 2001. Antioxidant systems and $O_2$.-/$H_2O_2$ production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 127:817-831. https://doi.org/10.1104/pp.010188
  8. Kim, J.S., J. Kim, T.H. Lee, K.M. Jun, T.H. Kim, Y.H. Kim, H.M. Park, J.S. Jeon, G. An, U.H. Yoon, B.H. Nahm, and Y.K. Kim. 2012. FSTVAL: A new web tool to validate bulk flanking sequence tags. Plant Methods 8:19. https://doi.org/10.1186/1746-4811-8-19
  9. Krasensky, J. and C. Jonak. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63:1593-1608. https://doi.org/10.1093/jxb/err460
  10. Lee, M.K., H.S. Kim, J.S. Kim, S.H. Kim, and Y.D. Park. 2004. Agrobacterium-mediated transformation system for large-scale production of transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) plants for insertional mutagenesis. J. Plant Biol. 47:300-306. https://doi.org/10.1007/BF03030544
  11. Lee, S.C., M.H. Lim, J.A. Kim, S.I. Lee, J.S. Kim, M. Jin, S.J. Kwon, J.H. Mun, Y.K. Kim, H.U. Kim, Y. Hur, and B.S. Park. 2008. Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray. Mol. Cells 26:595-605.
  12. Liu, J., M. Ishitani, U. Halfter, C.S. Kim, and J.K. Zhu. 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci. USA 97:3730-3734. https://doi.org/10.1073/pnas.97.7.3730
  13. Mantyla, E., V. Lang, and E.T. Palva. 1995. Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana. Plant Physiol. 107:141-148.
  14. Martinez-Atienza, J., X.Y. Jiang, B. Garciadeblas, I. Mendoza, J.K. Zhu, J.M. Pardo, and F.J. Quintero. 2007. Conservation of the salt overly sensitive pathway in rice. Plant Physiol. 143:1001-1012.
  15. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25:239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  16. Nordin, K., T. Vahala, and E.T. Palva. 1993. Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 21:641-653. https://doi.org/10.1007/BF00014547
  17. Perruc, E., M. Charpenteau, B.C. Ramirez, A. Jauneau, J.P. Galaud, R. Ranjeva, and B. Ranty. 2004. A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. Plant J. 38:410-420. https://doi.org/10.1111/j.1365-313X.2004.02062.x
  18. Qiu, Q.S., Y. Guo, M.A. Dietrich, K.S. Schumaker, and J.K. Zhu. 2002. Regulation of SOS1, a plasma membrane $Na^+$/$H^+$ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc. Natl. Acad. Sci. USA 99:8436-8441. https://doi.org/10.1073/pnas.122224699
  19. Rengasamy, P. 2006. World salinization with emphasis on Australia. J. Exp. Bot. 57:1017-1023. https://doi.org/10.1093/jxb/erj108
  20. Saijo, Y., S. Hata, J. Kyozuka, K. Shimamoto, and K. Izui. 2000. Over-expression of a single $Ca^{2+}$-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23:319-327. https://doi.org/10.1046/j.1365-313x.2000.00787.x
  21. Shi, H., B.H. Lee, S.J. Wu, and J.K. Zhu. 2003. Overexpression of a plasma membrane $Na^+$/$H^+$ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotech. 21:81-85.
  22. Tang, R.J., H. Liu, Y. Bao, Q.D. Lv, L. Yang, and H.X. Zhang. 2010. The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol. Biol. 74:367-380. https://doi.org/10.1007/s11103-010-9680-x
  23. Wu, S.J., L. Ding, and J.K. Zhu. 1996. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8:617-627. https://doi.org/10.1105/tpc.8.4.617
  24. Xiang, Y., Y.M. Huang, and L.Z. Xiong. 2007. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol. 144:1416-1428. https://doi.org/10.1104/pp.107.101295
  25. Xu, D., X. Duan, B. Wang, B. Hong, T.H.D. Ho, and R. Wu. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110:249-257.
  26. Yang, Q., Z.Z. Chen, X.F. Zhou, H.B. Yin, X. Li, X.F. Xin, X.H. Hong, J.K. Zhu, and Z. Gong. 2009. Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol. Plant 2:22-31. https://doi.org/10.1093/mp/ssn058
  27. Yu, J.G. and Y.D. Park. 2013. Isolation and identification of a new gene related to salt tolerance in Chinese cabbage. Kor. J. Hort. Sci. Technol. 31:748-755. https://doi.org/10.7235/hort.2013.13086
  28. Yu, J.G., G.H. Lee, and Y.D. Park. 2012. Comparison of RNA interference-mediated gene silencing and T-DNA integration techniques for gene function analysis in Chinese cabbage. Kor. J. Hort. Sci. Technol. 30:734-742. https://doi.org/10.7235/hort.2012.12093
  29. Yu, J.G., G.H. Lee, J.S. Kim, E.J. Shim, and Y.D. Park. 2010. An insertional mutagenesis system for analyzing the Chinese cabbage genome using Agrobacterium T-DNA. Mol. Cells 29:267-275. https://doi.org/10.1007/s10059-010-0013-3
  30. Zhao, J., Z. Sun, J. Zheng, X. Guo, Z. Dong, J. Huai, M. Gou, J. He, Y. Jin, J. Wang, and G. Wang. 2009. Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Mol. Biol. 69:661-674. https://doi.org/10.1007/s11103-008-9445-y
  31. Zhu, J.K. 1998. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol. 124:941-948.
  32. Zhu, J.K. 2003. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 6:441-445. https://doi.org/10.1016/S1369-5266(03)00085-2
  33. Ziaf, K., R. Loukehaich, P. Gong, H. Liu, Q. Han, T. Wang, H. Li, and Z. Ye. 2011. A multiple stress-responsive gene ERD15 from Solanum pennellii confers stress tolerance in tobacco. Plant Cell Physiol. 52:1055-1067. https://doi.org/10.1093/pcp/pcr057

Cited by

  1. Phenylethylisothiocyanate 함량이 증진된 형질전환 배추에서의 도입유전자의 후대 유전 및 발현 안정성 검정 vol.34, pp.1, 2014, https://doi.org/10.12972/kjhst.20160013