Browse > Article
http://dx.doi.org/10.7235/hort.2014.14040

Characterization and Gene Co-expression Network Analysis of a Salt Tolerance-related Gene, BrSSR, in Brassica rapa  

Yu, Jae-Gyeong (Department of Horticultural Biotechnology, Kyunghee University)
Lee, Gi-Ho (Department of Horticultural Biotechnology, Kyunghee University)
Park, Ji-Hyun (Department of Horticultural Biotechnology, Kyunghee University)
Park, Young-Doo (Department of Horticultural Biotechnology, Kyunghee University)
Publication Information
Horticultural Science & Technology / v.32, no.6, 2014 , pp. 845-852 More about this Journal
Abstract
Among various abiotic stress factors, soil salinity decreases the photosynthetic rate, growth, and yield of plants. Recently, many genes have been reported to enhance salt tolerance. The objective of this study was to characterize the Brassica rapa Salt Stress Resistance (BrSSR) gene, of which the function was unclear, although the full-length sequence was known. To characterize the role of BrSSR, a B. rapa Chinese cabbage inbred line ('CT001') was transformed with pSL94 vector containing the full length BrSSR cDNA. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that the expression of BrSSR in the transgenic line was 2.59-fold higher than that in the wild type. Analysis of phenotypic characteristics showed that plants overexpressing BrSSR were resistant to salinity stress and showed normal growth. Microarray analysis of BrSSR over-expressing plants confirmed that BrSSR was strongly associated with ERD15 (AT2G41430), a gene encoding a protein containing a PAM2 motif (AT4G14270), and GABA-T (AT3G22200), all of which have been associated with salt tolerance, in the co-expression network of genes related to salt stress. The results of this study indicate that BrSSR plays an important role in plant growth and tolerance to salinity.
Keywords
cDNA chip; gene expression network; microarray; over-expression;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Tang, R.J., H. Liu, Y. Bao, Q.D. Lv, L. Yang, and H.X. Zhang. 2010. The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol. Biol. 74:367-380.   DOI
2 Wu, S.J., L. Ding, and J.K. Zhu. 1996. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8:617-627.   DOI   ScienceOn
3 Xiang, Y., Y.M. Huang, and L.Z. Xiong. 2007. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol. 144:1416-1428.   DOI   ScienceOn
4 Xu, D., X. Duan, B. Wang, B. Hong, T.H.D. Ho, and R. Wu. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110:249-257.
5 Yang, Q., Z.Z. Chen, X.F. Zhou, H.B. Yin, X. Li, X.F. Xin, X.H. Hong, J.K. Zhu, and Z. Gong. 2009. Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol. Plant 2:22-31.   DOI   ScienceOn
6 Yu, J.G. and Y.D. Park. 2013. Isolation and identification of a new gene related to salt tolerance in Chinese cabbage. Kor. J. Hort. Sci. Technol. 31:748-755.   과학기술학회마을   DOI
7 Yu, J.G., G.H. Lee, and Y.D. Park. 2012. Comparison of RNA interference-mediated gene silencing and T-DNA integration techniques for gene function analysis in Chinese cabbage. Kor. J. Hort. Sci. Technol. 30:734-742.   과학기술학회마을   DOI
8 Yu, J.G., G.H. Lee, J.S. Kim, E.J. Shim, and Y.D. Park. 2010. An insertional mutagenesis system for analyzing the Chinese cabbage genome using Agrobacterium T-DNA. Mol. Cells 29:267-275.   과학기술학회마을   DOI   ScienceOn
9 Zhao, J., Z. Sun, J. Zheng, X. Guo, Z. Dong, J. Huai, M. Gou, J. He, Y. Jin, J. Wang, and G. Wang. 2009. Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Mol. Biol. 69:661-674.   DOI
10 Zhu, J.K. 1998. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol. 124:941-948.
11 Zhu, J.K. 2003. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 6:441-445.   DOI   ScienceOn
12 Ziaf, K., R. Loukehaich, P. Gong, H. Liu, Q. Han, T. Wang, H. Li, and Z. Ye. 2011. A multiple stress-responsive gene ERD15 from Solanum pennellii confers stress tolerance in tobacco. Plant Cell Physiol. 52:1055-1067.   DOI
13 Flowers, T.J. and A.R. Yeo. 1995. Breeding for salinity resistance in crop plants: Where next? Aust. J. Plant Physiol. 22:875-884.   DOI
14 Bertorello, A.M. and J.K. Zhu. 2009. SIK1/SOS2 networks: Decoding sodium signals via calcium-responsive protein kinase pathways. Pflugers Arch. 458:613-619.   DOI
15 Deng, X., W. Hu, S. Wei, S. Zhou, F. Zhang, J. Han, L. Chen, Y. Li, J. Feng, B. Fang, Q. Luo, S. Li, Y. Liu, G. Yang, and G. He. 2013. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS One 8:e69881.   DOI
16 Fait, A., H. Fromm, D. Walter, G. Galili, and A.R. Fernie. 2008. Highway or byway: The metabolic role of the GABA shunt in plants. Trends Plant Sci. 13:14-19.
17 Gong, Z., H. Koiwa, M.A. Cushman, A. Ray, D. Bufford, S. Kore-eda, T.K. Matsumoto, J. Zhu, J.C. Cushman, R.A. Bressan, and P.M. Hasegawa. 2001. Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiol. 126:363-375.   DOI
18 Kim, J.S., J. Kim, T.H. Lee, K.M. Jun, T.H. Kim, Y.H. Kim, H.M. Park, J.S. Jeon, G. An, U.H. Yoon, B.H. Nahm, and Y.K. Kim. 2012. FSTVAL: A new web tool to validate bulk flanking sequence tags. Plant Methods 8:19.   DOI
19 Halfter, U., M. Ishitani, and J.K. Zhu. 2000. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. USA 97:3735-3740.   DOI
20 Hernandez, J.A., M.A. Ferrer, A. Jimenez, A.R. Barcelo, and F. Sevilla. 2001. Antioxidant systems and $O_2$.-/$H_2O_2$ production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 127:817-831.   DOI   ScienceOn
21 Krasensky, J. and C. Jonak. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63:1593-1608.   DOI   ScienceOn
22 Lee, M.K., H.S. Kim, J.S. Kim, S.H. Kim, and Y.D. Park. 2004. Agrobacterium-mediated transformation system for large-scale production of transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) plants for insertional mutagenesis. J. Plant Biol. 47:300-306.   DOI
23 Lee, S.C., M.H. Lim, J.A. Kim, S.I. Lee, J.S. Kim, M. Jin, S.J. Kwon, J.H. Mun, Y.K. Kim, H.U. Kim, Y. Hur, and B.S. Park. 2008. Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray. Mol. Cells 26:595-605.
24 Liu, J., M. Ishitani, U. Halfter, C.S. Kim, and J.K. Zhu. 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci. USA 97:3730-3734.   DOI
25 Nordin, K., T. Vahala, and E.T. Palva. 1993. Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 21:641-653.   DOI   ScienceOn
26 Mantyla, E., V. Lang, and E.T. Palva. 1995. Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana. Plant Physiol. 107:141-148.
27 Martinez-Atienza, J., X.Y. Jiang, B. Garciadeblas, I. Mendoza, J.K. Zhu, J.M. Pardo, and F.J. Quintero. 2007. Conservation of the salt overly sensitive pathway in rice. Plant Physiol. 143:1001-1012.
28 Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25:239-250.   DOI   ScienceOn
29 Perruc, E., M. Charpenteau, B.C. Ramirez, A. Jauneau, J.P. Galaud, R. Ranjeva, and B. Ranty. 2004. A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. Plant J. 38:410-420.   DOI
30 Qiu, Q.S., Y. Guo, M.A. Dietrich, K.S. Schumaker, and J.K. Zhu. 2002. Regulation of SOS1, a plasma membrane $Na^+$/$H^+$ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc. Natl. Acad. Sci. USA 99:8436-8441.   DOI   ScienceOn
31 Rengasamy, P. 2006. World salinization with emphasis on Australia. J. Exp. Bot. 57:1017-1023.   DOI
32 Saijo, Y., S. Hata, J. Kyozuka, K. Shimamoto, and K. Izui. 2000. Over-expression of a single $Ca^{2+}$-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23:319-327.   DOI   ScienceOn
33 Shi, H., B.H. Lee, S.J. Wu, and J.K. Zhu. 2003. Overexpression of a plasma membrane $Na^+$/$H^+$ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotech. 21:81-85.