• Title/Summary/Keyword: 온도보상 회로

Search Result 137, Processing Time 0.026 seconds

Hot Wire Wind Speed Sensor System Without Ambient Temperature Compensation (주변 온도보상이 필요 없는 열선식 풍속 센서 시스템)

  • Sung, Junkyu;Lee, Keunwoo;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.10
    • /
    • pp.1188-1194
    • /
    • 2019
  • Among the many ways to measure the flow of fluid the hot air wind speed sensor is a device for measuring the speed or temperature by heat transfer of a fluid. However, the hot wire wind speed sensor is sensitive to external environmental factors, and has a disadvantage of inaccuracy due to ambient temperature, humidity, and signal noise. In order to compensate for this disadvantage, advanced technology has been introduced by adding temperature compensation circuits, but it is expensive. In order to solve this problem, this paper studies the wind speed sensor that does not need temperature compensation. Heated wind speed sensors are very vulnerable to the ambient temperature, which is generated by electronic circuits, even among external environmental factors. in order to improve this, the auxiliary heating element is additionally installed in the heating element to control a constant temperature difference between the auxiliary heating element and the heating element.

On Improvement of D-A Converter (연산증폭기와 온도보상 다이오드에 의한 D-A 변환기의 특성개선)

  • 이희두;안수길
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.7 no.2
    • /
    • pp.21-25
    • /
    • 1970
  • A Possibility of improving the temperature behavior by the use of a balanced diode compensation circuit in a Digital to Analogue converter is studied. Better linearity is achieved by eliminating the ladder network for the summation by means of an operational amplifier. Speed Consideration are taken to achieve 1.5 mesa bits per second with more than 80% useful plateau.

  • PDF

정온도형 열선유속계의 오차해석과 그 응용

  • 고상근
    • Journal of the KSME
    • /
    • v.31 no.6
    • /
    • pp.512-518
    • /
    • 1991
  • TSI IFA 100 Thermal anemometer와 같이 자동화된 유속계라 할지라도, 사용자가 조정해야 하는 과열비, 인덕턴스 등과 같은 인자가 있다. 이와 같은 조정의 문제 외에도 오차를 고려해야 하는 많은 요소가 있다. 이들 중 주위 유체의 온도 변화에 대한 영향 등에 깊은 이해를 가지고 있어야 정밀계측을 가능하게 할 것이다. 그 예로서 자동차에서 사용되는 정온도형 열선유속계 형의 공기유량계는 주위온도 보상을 위한 회로가 내장되어 동절기와 하절기 사이의 온도차를 보상하고 있다.

  • PDF

Passive Temperature Compensation for All Optical Fiber Type DWDM Interleaver (고밀도 파장분할용 전광섬유형 인터리버의 수동 온도보상)

  • Chang Jin Hyeon;Kim Yung Kwon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.12
    • /
    • pp.35-42
    • /
    • 2004
  • In this paper, we report Mach Zehnder Interleaver of optical fiber type is fabricated by the fabrication system only for interfermeter design, and it is used $CO_2$ laser to adjust precisely the wavelength. The optical fiber is very sensitive in the thermal variation around. Thus, When fabrication the prototype, it is applied a technique to compensate the optical thermal effect because the center wavelength at the output is shifted according to the thermal variation around. it can he done by applying a substrate with high thermal expansion coefficient as well as an adjusting the position between two optical fiber couplers. Consequently, the output wavelength is shifted within 0.05 nm when the surrounding temperature varies until $60^{\circ}C$.

Stabilization of High-Voltage Static Var Compensator Using Switching Velocity and Temperature Control (스위칭 속도 및 온도 제어를 사용한 고압용 정지형 무효전력 보상장치의 안정화)

  • Kim, Yong-Tae;Lee, Chang-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.107-112
    • /
    • 2013
  • In the paper, velocity controller of switching module and temperature controller for the high-voltage static var compensator are proposed. Because of the continuous increase in demand for electric power, transmission and distribution facilities of power plant are required. There is a bottleneck problem of transportation routes according to new construction and expansion of power transmission facilities. Therefore there are researches to maximize the utilization of existing facilities and to increase transmission capacity without new construction. The previous static var compensator detects voltage of input circuit of power, switches the SCR directly and generates switching noise. The proposed method increases switching velocity and decreases noise using switching control based on the voltage between both sides of SCR. Also the proposed method enhance the stability using realtime temperature control for heating of the system from increase of switching velocity. We experiment the velocity and temperature control of the proposed high-voltage static var compensator in the real environment and verify the performance of the proposed system by applying in the real field.

A Smart Sensor System with a Programmable Temperature Compensation Technique (프로그래머블한 온도 보상 기법의 스마트 센서 시스템)

  • Kim, Ju-Hwan;Kang, Yu-Ri;Lee, Woo-Kwan;Kim, Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.63-70
    • /
    • 2008
  • In this paper, a smart sensor system for the MEMS pressure sensor was developed. A compensation algorithm and programmable calibration circuits were presented to eliminate errors caused by temperature drift of piezoresistive pressure sensors in itself. This system consisted of signal conditioning, calibration, temperature detection, microprocessor, and communication parts and these were integrated into a SOC. A RS-232 interface was employed for monitoring and control of a smart sensor system. The area of fabricated IC is $4.38{\times}3.78\;mm^2$ and a $0.35{\mu}m$ high voltage CMOS process was used. Compensation error for temperature drift of 50 KPa pressure sensors was measured into ${\pm}0.48%$ in the range of $-40^{\circ}C{\sim}150^{\circ}C$. Total power consumption was 30.5 mW.

A Design of Output Voltage Compensation Circuits for Bipolar Integrated Pressure Sensor (바이폴라 공정을 이용한 압력센서용 출력전압 보상회로의 설계)

  • Lee, Bo-Na;Kim, Kun-Nyun;Park, Hyo-Derk
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.300-305
    • /
    • 1998
  • In this paper, integrated pressure sensor with calibration of offset voltage and full scale output and temperature compensation of offset voltage and full scale output were designed. The signal conditioning circuitry are designed that calibrate the offset voltage and full scale output to desired values and minimize the temperature drift of offset voltage and full scale output. Designed circuits are simulated using SPICE in a bipolar technology. The ion implanted resistor of different temperature coefficient were used to trimming the desired values. As a results, offset voltage was calibrated to 0.133V and the temperature drift of offset voltage was reduced to $42\;ppm/^{\circ}C$. Also, the full scale output was calibrated to 4.65V and the temperature coefficient of full scale output was reduced to $40ppm/^{\circ}C$ after temperature compensation.

  • PDF

0.35㎛ CMOS Low-Voltage Current/Voltage Reference Circuits with Curvature Compensation (곡률보상 기능을 갖는 0.35㎛ CMOS 저전압 기준전류/전압 발생회로)

  • Park, Eun-Young;Choi, Beom-Kwan;Yang, Hee-Jun;Yoon, Eun-Jung;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.527-530
    • /
    • 2016
  • This paper presents curvature-compensated reference circuits operating under low-voltage condition and achieving low-power consumption with $0.35-{\mu}m$ standard CMOS process. The proposed circuit can operate under less than 1-V supply voltage by using MOS transistors operating in weak-inversion region. The simulation results shows a low temperature coefficient by using the proposed curvature compensation technique. It generates a graph-shape temperature characteristic that looks like a sine curve, not a bell-shape characteristic presented in other published BGRs without curvature compensation. The proposed circuits operate with 0.9-V supply voltage. First, the voltage reference circuit consumes 176nW power and the temperature coefficient is $26.4ppm/^{\circ}C$. The current reference circuit is designed to operate with 194.3nW power consumption and $13.3ppm/^{\circ}C$ temperature coefficient.

  • PDF

A compensation method for a temperature-dependent gain tilt in L-band EDFA using a voltage-controlled attenuator (L-band EDFA 에서의 온도에 따른 이득 변화와 가변 감쇄기를 이용한 온도 보상)

  • 이원경;정희상;주무정
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.12-16
    • /
    • 2003
  • This paper presents a compensation method for a temperature-dependent gain tilt in L-band erbium-doped fiber amplifier using a voltage-controlled attenuator. The gain tilts in the L-band of 1570-1605 nm due to a temperature change have negative slopes, whereas they have positive slopes for the increasing optical input powers in a saturation region. The proposed method utilizes these opposite gain variations to compensate for the gain tilt over a wide range of temperature. While applying forty channels with a channel spacing of 100 GHz in the L-band and changing the ambient temperature from 0 to $50^{\circ}C$, the compensation method maintained the gain deviation within 1 dB.

Design of a new adaptive circuit to compensate for aging effects of nanometer digital circuits (나노미터 디지털회로의 노화효과를 보상하기위한 새로운 적응형 회로 설계)

  • Kim, Kyung Ki
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.6
    • /
    • pp.25-30
    • /
    • 2013
  • In nanoscale MOSFET technology, aging effects such as Negative Bias Temperature Instability(NBTI), Hot carrier Injection(HCI), Time Dependent Dielectric Breakdown (TDDB) and so on which affect circuit reliability can lead to severe degradation of digital circuit performance. Therefore, this paper has proposed the adaptive compensation circuit to overcome the aging effects of digital circuits. The proposed circuit deploys a power gating structure with variable power switch width and variable forward body-biasing voltage in order to adaptively compensate for aging induced performance degradation, and has been designed in 45nm technology.