• Title/Summary/Keyword: 열탄성 거동

Search Result 95, Processing Time 0.025 seconds

Failure Prediction of Thermo-Chemically Decomposing Composite for Rocket Thermal Insulators (열경화성 복합재 로켓 방화벽의 파손 예측)

  • Lee, Sun-Pyo;Lee, Jung-Youn
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.25-31
    • /
    • 2005
  • The theory developed in a preceding paper [1] for poroelastic composite material behavior under thermal and gas diffusion is applied to thermo-chemical decomposition of a carbon-phenolic composite rocket nozzle liner under typical operating conditions. Specifically, the structural component simulated is the cowl ring for which distributions of pressure in the material pores, temperature and across-ply stress are presented. The results for particular composite designs show that across-ply failure occurs due to tensile stress in the material which is indicative of plylift. This prediction corroborates observations of plylift in a nozzle cowl. Simulations suggest designs to avoid plylift in the cowl zone.

Elastic-Damage Constitutive Model for Nonlinear Tensile Behavior of Polymeric Foam (폴리머 폼의 비선형 인장거동을 모사하기 위한 기공이 고려된 손상 탄성 구성방정식)

  • Kwon, Sun-Beom;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.4
    • /
    • pp.191-197
    • /
    • 2018
  • This paper details the development of an isotropic elastic-damage constitutive model for polymeric foam based on irreversible thermodynamics to consider the growth and coalescence of voids. The constitutive equations describe the material behavior sustaining unilateral damage. To facilitate finite element analysis, the material properties for specific types of polymeric foams are applied to the developed model; the model is then implemented in ABAQUS as a user-defined material subroutine. To validate the developed damage model, the simulated results are compared to the results of a series of tensile tests on various polymeric foams. The proposed damage model can be utilized to further research on continuum damage mechanics and finite element analysis of polymeric foams in computational engineering.

Study on the Thermomechanical Properties of Epoxy-Silica Nanocomposites by FTIR Molecular Structure Analyses (FTIR 분자구조 해석을 통한 에폭시-실리카 나노복합소재의 열기계적 물성 연구)

  • Jang, SeoHyun;Han, Yusu;Hwang, DoSoon;Jung, Juwon;Kim, YeongKook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.51-57
    • /
    • 2021
  • This paper analyzed the effects of the concentration of nano-silica particles contained in epoxy resin on the thermomechanical properties of the composite materials. The 12nm sized nanoparticles were mixed with epoxy polymer by 5 different weight ratios for the test samples. The glass transition temperature, stress relaxation, and thermal expansion behaviors were measured using dymanic mechanical analyzer (DMA) and thermomechanical analyzer (TMA). It was shown that the nano particle mixing ratios had significant influences on the viscoelastic behaviors of the materials. As the content of the silica particles was increased, the elastic modulus was also increased, while the glass transition temperatures were decreased. Fourier Transform Infrared Spectroscopy (FTIR) results played an important role in determining the causes of the property changes by the filler contents in terms of the molecular structures, enabling the interpretations on the material behaviors based on the chemical structure changes.

Analytical Study on Concrete Cover Thickness of Anisotropic FRP Bar (이방성 섬유강화폴리머 보강근의 콘크리트 피복두께에 대한 해석적 연구)

  • Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.58-66
    • /
    • 2022
  • In this study, to examine the effect of the transverse thermal expansion behavior of FRP reinforcing bars and concrete on the concrete cover thickness, based on 20℃, when the temperature changes from -70℃ to 80℃, the behavior of concrete was studied theoretically and numerically. Theoretical elastic analysis and nonlinear finite element analysis were performed on FRP reinforced concrete with different diameters and cover thicknesses of FRP reinforcement. As a result, at a negative temperature difference, concrete was compressed, and the theoretical strain result and the finite element result were similar, but at a positive temperature difference, tensile stress and further cracks occurred in the concrete, which was 1.2 to 1.4 times larger than the theoretical result. The ratio of the diameter of the FRP reinforcing bar to the thickness of the concrete cover (c/db) is closely related to the occurrence of cracks. Since the transverse thermal expansion coefficient of FRP reinforcing bars is three times greater than that of concrete, it is necessary to consider this in design.

The Sag Behavior of STACIR/AW $410mm^2$ Power Line (STACIR/AW $410mm^2$ 송전선의 이도거동)

  • Park, Su-Dong;Kim, Byung-Geol;Kim, Shang-Shu;Lee, Hee-Woong;Jang, Tae-In;Kang, Ji-Won;Lee, Dong-Il;Min, Byung-Uk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1262-1265
    • /
    • 2004
  • 송전용량 증가를 위해 개발되어 최근 본격적으로 사용되고 있는 STACIR/AW 송전선은 송전용량의 증가에 따라 그 운전환경도 변화하여 연속사용온도의 경우, 기존 ACSR 전선의 90t에 비해 높은 $210^{\circ}C$로 규정 되어 있을 만큼 고온에서 운전되고 있다. 따라서 STACIR/AW 송전선은 이도설계와 그 운용에 있어서 운전 온도 상승에 따른 각별한 주의관리가 필요하다 실제 STACIR/AW송전선은 그 설계단계에서도 이와 같은 고온운전 환경을 고려하여 고온에서도 소정강도를 유지하는 내열 Al도체와 이도제어를 위한 낮은 열팽창 특성의 INVAR합금(Fe-35Ni계 합금)을 강선으로 하는 특화된 재료로 구성되어 있다. 그러나 이와 같은 재료 설계적 보완책에도 불구하고 실제 송전선은 전선의 자중, 철탑 간에 형성된 가설장력과 같은 다양한 응력이 고온환경에서 부하되는 복합 열화 상태에 노출되어 있고, 이것은 재료학적인 관점에서 크릴 변형 발생의 가능성을 높이고 있으나 이것에 대한 연구 또는 실험결과는 크게 미미한 실정이다. 본 연구에서는 STACIR/AW $410mm^2$ 송전선과 그 구성소재를 대상으로 $200^{\circ}C$, $300^{\circ}C$에서 장시간 열화한 후, 구성소재의 탄성계수, 열팽창계수 및 STACIR/AW전선의 크림변형 거동을 조사하여 열화에 노출된 STACIR/AW 송전선의 이도변화 거동을 규명하고자 하였다.

  • PDF

Parametric Study on Design Variables of Concrete Beam Reinforced with GFRP Rebar using Finite Element Analysis (유한요소해석에 의한 GFRP 보강 콘크리트 보의 설계인자 분석)

  • Moon, Do-Young;Oh, Hong-Seob;Ahn, Kwang-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.357-367
    • /
    • 2008
  • Parametric study of beams with reinforced with FRP rebar is conducted in this study. Using ABAQUS program, the finite element analysis model is set and calibrated with the experimental results which have been conducted by the authors. The employed design parameters are reinforcement ratio, elastic modulus of rebar, and concrete strength. The obtained results from FE analysis are investigated in terms of normalized beam stiffness. In particular, the effect of reinforcement ratio on the flexural stiffness is investigated with comparing with the model code specified on ACI 440. From the analysis results, the reinforcement ratio in beam is the first parameter affecting on the beam stiffness. In addition, its effect could be increased with higher concrete strength.

A Evaluation on the Field Application of High Strength Concrete for CFT Column (고강도 CFT용 콘크리트의 현장적용성 평가 및 장기거동 예측)

  • Park, Je Young;Chung, Kyung Soo;Kim, Woo Jae;Lee, Jong In;Kim, Yong Min
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.707-714
    • /
    • 2014
  • CFT (Concrete-Filled Tube) is a type of steel column comprised of steel tube and concrete. Steel tube holds concrete and the concrete inside tube takes charge of compressive load. This study presents structural performance of the CFT column which has 73~100 MPa high strength concrete inside. Fluidity, mechanical compression, pump pressure test in flexible pipe were conducted for understanding properties of the high strength concrete. Material properties were achieved by various experimental tests, such as slump, slump flow, air content, U-box, O-Lot, L-flow. In addition, mock-up tests were conducted to monitor concrete filling, hydration heat, compressive strength. From construction sites in Sang-am dong and University of Seo-kang, long-term behaviors could be effectively predicted in terms of ACI 209 material model considering elastic deformation, shrinkage and creep.

Study on Behavior Characteristics of Embedded PCB for FCCSP Using Numerical Analysis (수치해석을 이용한 FCCSP용 Embedded PCB의 Cavity 구조에 따른 거동특성 연구)

  • Cho, Seunghyun;Lee, Sangsoo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.67-73
    • /
    • 2020
  • In this paper, we used FEM technique to perform warpage and von Mises stress analysis on PCB according to the cavity structures of embedded PCB for FCCSP and the types of prepreg material. One-half substrate model and static analysis are applied to the FEM. According to the analysis results of the warpage, as the gap between the cavity and the chip increased, warpage increased and warpage increased when prepreg material with higher modularity and thermal expansion coefficient was applied. The analysis results of the von Mises stress show that the effect of the gap between the cavity and the chip varies depending on prepreg material. In other words, when material whose coefficient of thermal expansion is significantly higher than that of core material, the stress increased as the gap between the cavity and the chip increased. When the prepreg with the coefficient of thermal expansion lower than the core material is applied, the result of stress is opposite. These results indicate that from a reliability perspective, there is a correlation between the structure of the cavity where embedded chips are loaded and prepreg material.

Analysis of Mechanical Property Changes of Polymer Eyeglass Frames by Thermal Impact (고분자 안경테의 온도에 의한 기계적 물성 변화 분석)

  • Seo, Hogeun;Yoon, Taeyang;Noh, Hyeran
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.4
    • /
    • pp.429-434
    • /
    • 2014
  • Purpose: To analyze thermal effect on mechanical properties of domestic commercial polymer-based eyewear frames. Methods: In this study, materials of cellulose acetate, polyamide, epoxy, and polyetherimide were exposed to high or low temperature and were mounted on universal test machine (TO-100-IC) for tensile strength test. Elastic behavior, Young's modulus, maximum displacement, and fatigue were tested with various temperature ($-25^{\circ}C$, $25^{\circ}C$, $60^{\circ}C$). Results: As a result, at room temperature, displacements of materials were changed with increasing impact load. At low temperature ($-25^{\circ}C$), maximum displacements of all specimens were decreased but young's modulus were increased. However, at high temperature, maximum displacements of all specimens were increased but young's modulus were decreased. Conclusions: Degree of displacements due to fatigue behavior was increased following direction of PEI, epoxy, polyamide, acetate. We concluded that commercial polymers used in eyewear frames physical properties were changed differently to exposed temperature.

Inelastic Nonlinear Analysis of Plane Truss Structures Using Arc-Length Method (호장법을 이용한 평면 트러스 구조의 비탄성 비선형 해석)

  • Kim, Kwang-Joong;Baek, Ki-Youl;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • Spatial structure is an appropriate shape that resists external force only with in-plane forte by reducing the influence of bending moment, and it maximizes the effectiveness of structure system. the spatial structure should be analyzed by nonlinear analysis regardless static and dynamic analysis because it accompanys large deflection for member. To analyze the spatial structure geometrical and material nonlinearity should be considered in the analysis. In this paper, a geometrically nonlinear finite element model for plane truss structures is developed, and material nonlinearity is also included in the analysis. Arc-length method is used to solve the nonlinear finite element model. It is found that the present analysis predicts accurate nonlinear behavior of plane truss.

  • PDF