Browse > Article
http://dx.doi.org/10.6117/kmeps.2020.27.1.0067

Study on Behavior Characteristics of Embedded PCB for FCCSP Using Numerical Analysis  

Cho, Seunghyun (Department of Mechanical Engineering, Dongyang Mirae University)
Lee, Sangsoo (Department of Mechanical Engineering, Dongyang Mirae University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.27, no.1, 2020 , pp. 67-73 More about this Journal
Abstract
In this paper, we used FEM technique to perform warpage and von Mises stress analysis on PCB according to the cavity structures of embedded PCB for FCCSP and the types of prepreg material. One-half substrate model and static analysis are applied to the FEM. According to the analysis results of the warpage, as the gap between the cavity and the chip increased, warpage increased and warpage increased when prepreg material with higher modularity and thermal expansion coefficient was applied. The analysis results of the von Mises stress show that the effect of the gap between the cavity and the chip varies depending on prepreg material. In other words, when material whose coefficient of thermal expansion is significantly higher than that of core material, the stress increased as the gap between the cavity and the chip increased. When the prepreg with the coefficient of thermal expansion lower than the core material is applied, the result of stress is opposite. These results indicate that from a reliability perspective, there is a correlation between the structure of the cavity where embedded chips are loaded and prepreg material.
Keywords
Embedded chip; PCB; Cavity; Prepreg; Warpage; Stress; FEM;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 S. H. Cho, D. H. Kim, Y. G. Oh, J. T. Lee, and S. S. Cha, "A Study on the Parameters of Design for Warpage reduction of Passive components Embedded Substrate for PoP", J. Microelectron. Packag. Soc., 22(1), 75 (2015).   DOI
2 D. H. Park and T. S. Oh, "Reliability Characteristics of a Package-on-Package with Temperature/Humidity Test, Temperature Cycling Test, and High Temperature Storage Test", J. Microelectron. Packag. Soc., 23(3), 43 (2016).   DOI
3 S. Yi, K. O. Kim, D. W. Lee, H. W. Kim, and T. S. Jung, "Embedded passive device technology for wireless mobile devices", Microelectronics International, 30(1), 33 (2013).   DOI
4 T. Snyder and S. Yi, "Thermal performance of embedded active chips", 9th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 209 (2014).
5 M. Y. Tsi, C. H. J. Hsu, and C. T. O. Wang, "Investigation of thermomechanical behaviors of flip chip BGA packages during manufacturing process and thermal cycling", Components and Packaging Technologies, 27(3), 568 (2004).   DOI
6 R. Darveaux, C. Reichman, and N. Islam, "Interface Failure in Lead Free Solder Joints", Proc. 56th Electronic Components and Technology Conference (ECTC), San diego, 906 (2006).
7 S. H. Cho, S. J. Cho, and J. Y. Lee, "Estimation of warpage and thermal stress of IVHs in flip-hip ball grid arrays package by FEM", Microelectronics Reliability, 48(2), 300 (2008).   DOI
8 J. H. Lau and S. W. R. Lee, "Effects of Build-Up Printed Circuit Board Thickness in the Solder Joint Reliability of a Wafer Level Chip Scale Package(WLCSP)", Trans. Comp. Packag. Technol., 25(1), 51 (2002).
9 S. H. Cho, H. I. Jung, and O. C. Bae, "Numerical Analysis on the Design Variables and Thickness Deviation Effects on Warpage of Substrate for FCCSP", J. Microelectron. Packag. Soc., 19(3), 57 (2012).   DOI
10 W. Sun, W. H. Zhu, C. K. Wang, A. Y. S. Sun, and H. B. Tan, "Warpage Simulation and DOE Analysis with Application in Package-on-Package Development", Proc. 9th Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, Euro-SimE, Freiburg, 244, IEEE (2008).
11 S. H. Cho D. H. Kim, Y. G. Oh, J. T. Lee, and S. S. Cha, "A Study on the Parameters of Design for Warpage reduction of Passive components Embedded Substrate for PoP", J. Microelectron. Packag. Soc., 22(1), 75 (2015).   DOI
12 Y. L. Tzeng, N. Kao, E. Chen, J. Y. Lai, Y. P. Wang, and C. S. Hsiao, "Warpage and Stress Characteristic Analyses on Package-on-Package (PoP) Structure", Proc. 9th Electronics Packaging Technology Conference (EPTC), Singapore, 482, IEEE (2007).
13 W. Sun, W. H. Zhu, K. S. Le, and H. B. Tan, "Simulation Study on the Warpage Behavior and Board-level Temperature Cycling Reliability of PoP Potentially for High-speed Memory Packaging", International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), Shanghai, 978, IEEE (2008).
14 C. M. Ryder, "Embedded components: A comparative analysis of reliability", Proc. IPC APEX, Las Vegas, 3156 (2011).
15 L. Boettcher, S. Karaszkiwicz, D. Manessis and A. Ostmann, "Embedded chip technology: Technologies, applications, and future developments", Proc. SMTA, San Diego, 9 (2012).
16 C. T. Ko, S. Chen, C. W. Chiang, T. Y. Kuo, Y. C. Shih and Y. H. Chen, "Embedded active device packaging technology for next-generation chip-in-substrate package, CiSP", Proc. 56th Electronics Components and Technology Conference (ECTC), San Diego, 322, IEEE (2006).
17 L. Boettcher, D. Manessis, A. Ostmann, and H. Reichel, "Realization of system in package modules by embedding of chips", Proc. IMAPS Device Packaging, Scottsdale, 397 (2008).
18 H. W. Park, S. H. Cho, J. Kress, A. Bruderer, and N. Galster, "Dielectric composite material with good performance and process ability for embedding of active and passive components into PCBs", Proc. 63rd Electronic Components and Technology Conference (ECTC), Las Vegas, 1325, IEEE (2013).