Browse > Article
http://dx.doi.org/10.7734/COSEIK.2018.31.4.191

Elastic-Damage Constitutive Model for Nonlinear Tensile Behavior of Polymeric Foam  

Kwon, Sun-Beom (Department of Naval Architecture and Ocean Engineering, Pusan National University)
Lee, Jae-Myung (Department of Naval Architecture and Ocean Engineering, Pusan National University)
Publication Information
Journal of the Computational Structural Engineering Institute of Korea / v.31, no.4, 2018 , pp. 191-197 More about this Journal
Abstract
This paper details the development of an isotropic elastic-damage constitutive model for polymeric foam based on irreversible thermodynamics to consider the growth and coalescence of voids. The constitutive equations describe the material behavior sustaining unilateral damage. To facilitate finite element analysis, the material properties for specific types of polymeric foams are applied to the developed model; the model is then implemented in ABAQUS as a user-defined material subroutine. To validate the developed damage model, the simulated results are compared to the results of a series of tensile tests on various polymeric foams. The proposed damage model can be utilized to further research on continuum damage mechanics and finite element analysis of polymeric foams in computational engineering.
Keywords
polymeric foam; porosity/voids; elastic constitutive model; ABAQUS user-defined material subroutine;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bao, J.B., Junior, A.N., Weng, G.S., Wang, J., Fang, Y.W., Hu, G.H. (2016) Tensile and Impact Properties of Microcellular Isotactic Polypropylene (PP) Foams Obtained by Supercritical Carbon Dioxide, J. Supercrit. Fluids, 111, pp.63-73.   DOI
2 Hayakawa, K., Murakami, S. (1997) Thermodynamical Modeling of Elastic-Plastic Damage and Experimental Validation of Damage Potential, Int. J. Damage Mech., 6(4), pp.333-363.   DOI
3 Ju, J.W. (1989) On Energy-based Coupled Elastoplastic Damage Theories: Constitutive Modeling and Computational Aspects, Int. J. Solids & Struct., 25(7), pp.803-833.   DOI
4 Kim, S.K., Kim, J.H., Lee, C.S., Kim, M.H., Lee, J.M. (2015) Development of Computational Evaluation Method for Fatigue Crack Growth Rate based on Viscoplastic-Damage Model, J. Comput. Struct. Eng. Inst. Korea, 28(1), pp.1-8.   DOI
5 Kwon, S.B., Lee, J.M. (2017) A Non-Oscillatory Time Integration Method for Numerical Simulation of Stress Wave Propagations, Comput. & Struct., 192, pp.248-268.   DOI
6 Wang, L.L. (2007) Foundations of Stress Waves, Elsevier BV, Amsterdam, p.533.
7 Lee, C.S., Kim, M.S., Park, S.B., Kim, J.H., Bang, C.S., Lee, J.M. (2015) A Temperature- and Strain-Rate-Dependent Isotropic Elasto-Viscoplastic Model for Glass-Fiber-Reinforced Polyurethane Foam, Mater. & Des., 84, pp.163-172.   DOI
8 Lee, C.S., Lee, J.M. (2014) Anisotropic Elasto-Viscoplastic Damage Model for Glass-Fiber-Reinforced Polyurethane Foam, J. Compos. Mater., 48(27), pp.3367-3380.   DOI
9 Lee, J.H., Kim, S.K., Park, S.B., Bang, C.S., Lee, J.M. (2016) Application of Gurson Model for Evaluation of Density-Dependent Mechanical Behavior of Polyurethane Foam: Comparative Study on Explicit and Implicit Method, Macromol. Mater. & Eng., 301(6), pp.694-706.   DOI
10 Halm, D., Dragon, A. (1998) An Anisotropic Model of Damage and Frictional Sliding for Brittle Materials, Eur. J. Mech.-A/Solids, 17(3), pp.439-460.   DOI
11 Lubarda, V.A., Krajcinovic, D., Mastilovic, S. (1994) Damage Model for Brittle Elastic Solids with Unequal Tensile and Compressive Strengths, Eng. Fract. Mech., 49(5), pp.681-697.   DOI
12 Modesti, M., Lorenzetti, A., Besco, S. (2007) Influence of Nanofillers on Thermal Insulating Properties of Polyurethane Nanocomposites Foams, Polymer Eng. & Sci., 47(9), pp.1351-1358.   DOI
13 Song, W., Barber, K., Lee, K.Y. (2017) Heat-Induced Bubble Expansion as a Route to Increase the Porosity of Foam-Templated Bio-based Macroporous Polymers, Polymer, 118, pp.97-106.   DOI
14 Murakami, S. (2012) Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture, Springer, Berlin, p.402.
15 Murakami, S., Kamiya, K. (1997) Constitutive and Damage Evolution Equations of Elastic-Brittle Materials based on Irreversible Thermodynamics, Int. J. Mech. Sci., 39(4) pp.473-486.   DOI
16 Rousselier, G. (1987) Ductile Fracture Models and Their Potential in Local Approach of Fracture, Nucl. Eng. & Des., 105(1), pp.97-111.   DOI
17 Tomicevic, Z., Kodvanj, J., Hild, F. (2016) Characterization of the Nonlinear Behavior of Nodular Graphite Cast Iron via Inverse Identification-Analysis of Uniaxial Tests, Eur. J. Mech.-A/Solids, 59, pp.140-154.   DOI