DOI QR코드

DOI QR Code

Elastic-Damage Constitutive Model for Nonlinear Tensile Behavior of Polymeric Foam

폴리머 폼의 비선형 인장거동을 모사하기 위한 기공이 고려된 손상 탄성 구성방정식

  • Kwon, Sun-Beom (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Lee, Jae-Myung (Department of Naval Architecture and Ocean Engineering, Pusan National University)
  • 권순범 (부산대학교 조선해양공학과) ;
  • 이제명 (부산대학교 조선해양공학과)
  • Received : 2018.05.28
  • Accepted : 2018.07.07
  • Published : 2018.08.31

Abstract

This paper details the development of an isotropic elastic-damage constitutive model for polymeric foam based on irreversible thermodynamics to consider the growth and coalescence of voids. The constitutive equations describe the material behavior sustaining unilateral damage. To facilitate finite element analysis, the material properties for specific types of polymeric foams are applied to the developed model; the model is then implemented in ABAQUS as a user-defined material subroutine. To validate the developed damage model, the simulated results are compared to the results of a series of tensile tests on various polymeric foams. The proposed damage model can be utilized to further research on continuum damage mechanics and finite element analysis of polymeric foams in computational engineering.

폴리머 폼은 다공성을 가장 큰 특징으로 하는 재료이기 때문에, 본 연구에서 비가역 열역학 관점을 기반으로 폴리머 폼의 기공 성장 및 합체를 고려한 손상 탄성 구성방정식을 개발하였으며, 개발된 구성방정식은 unilateral 손상의 효과를 고려하였다. 유한요소해석의 적용을 위해 상용 유한요소해석 프로그램인 ABAQUS의 사용자 서브루틴 UMAT을 이용하여 제안된 구성방정식을 수치적으로 구현하였다. 비선형 유한요소해석 결과와 폴리머 폼의 인장 시험 결과와 비교를 통해 제안된 손상 모델의 유효성을 검증하였으며, 제안된 구성방정식의 재료모델상수가 손상에 미치는 영향에 대해 분석하였다.

Keywords

References

  1. Bao, J.B., Junior, A.N., Weng, G.S., Wang, J., Fang, Y.W., Hu, G.H. (2016) Tensile and Impact Properties of Microcellular Isotactic Polypropylene (PP) Foams Obtained by Supercritical Carbon Dioxide, J. Supercrit. Fluids, 111, pp.63-73. https://doi.org/10.1016/j.supflu.2016.01.016
  2. Halm, D., Dragon, A. (1998) An Anisotropic Model of Damage and Frictional Sliding for Brittle Materials, Eur. J. Mech.-A/Solids, 17(3), pp.439-460. https://doi.org/10.1016/S0997-7538(98)80054-5
  3. Hayakawa, K., Murakami, S. (1997) Thermodynamical Modeling of Elastic-Plastic Damage and Experimental Validation of Damage Potential, Int. J. Damage Mech., 6(4), pp.333-363. https://doi.org/10.1177/105678959700600401
  4. Ju, J.W. (1989) On Energy-based Coupled Elastoplastic Damage Theories: Constitutive Modeling and Computational Aspects, Int. J. Solids & Struct., 25(7), pp.803-833. https://doi.org/10.1016/0020-7683(89)90015-2
  5. Kim, S.K., Kim, J.H., Lee, C.S., Kim, M.H., Lee, J.M. (2015) Development of Computational Evaluation Method for Fatigue Crack Growth Rate based on Viscoplastic-Damage Model, J. Comput. Struct. Eng. Inst. Korea, 28(1), pp.1-8. https://doi.org/10.7734/COSEIK.2015.28.1.1
  6. Kwon, S.B., Lee, J.M. (2017) A Non-Oscillatory Time Integration Method for Numerical Simulation of Stress Wave Propagations, Comput. & Struct., 192, pp.248-268. https://doi.org/10.1016/j.compstruc.2017.07.030
  7. Wang, L.L. (2007) Foundations of Stress Waves, Elsevier BV, Amsterdam, p.533.
  8. Lee, C.S., Kim, M.S., Park, S.B., Kim, J.H., Bang, C.S., Lee, J.M. (2015) A Temperature- and Strain-Rate-Dependent Isotropic Elasto-Viscoplastic Model for Glass-Fiber-Reinforced Polyurethane Foam, Mater. & Des., 84, pp.163-172. https://doi.org/10.1016/j.matdes.2015.06.086
  9. Lee, C.S., Lee, J.M. (2014) Anisotropic Elasto-Viscoplastic Damage Model for Glass-Fiber-Reinforced Polyurethane Foam, J. Compos. Mater., 48(27), pp.3367-3380. https://doi.org/10.1177/0021998313509863
  10. Lee, J.H., Kim, S.K., Park, S.B., Bang, C.S., Lee, J.M. (2016) Application of Gurson Model for Evaluation of Density-Dependent Mechanical Behavior of Polyurethane Foam: Comparative Study on Explicit and Implicit Method, Macromol. Mater. & Eng., 301(6), pp.694-706. https://doi.org/10.1002/mame.201500431
  11. Lubarda, V.A., Krajcinovic, D., Mastilovic, S. (1994) Damage Model for Brittle Elastic Solids with Unequal Tensile and Compressive Strengths, Eng. Fract. Mech., 49(5), pp.681-697. https://doi.org/10.1016/0013-7944(94)90033-7
  12. Modesti, M., Lorenzetti, A., Besco, S. (2007) Influence of Nanofillers on Thermal Insulating Properties of Polyurethane Nanocomposites Foams, Polymer Eng. & Sci., 47(9), pp.1351-1358. https://doi.org/10.1002/pen.20819
  13. Murakami, S. (2012) Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture, Springer, Berlin, p.402.
  14. Murakami, S., Kamiya, K. (1997) Constitutive and Damage Evolution Equations of Elastic-Brittle Materials based on Irreversible Thermodynamics, Int. J. Mech. Sci., 39(4) pp.473-486. https://doi.org/10.1016/S0020-7403(97)87627-8
  15. Rousselier, G. (1987) Ductile Fracture Models and Their Potential in Local Approach of Fracture, Nucl. Eng. & Des., 105(1), pp.97-111. https://doi.org/10.1016/0029-5493(87)90234-2
  16. Song, W., Barber, K., Lee, K.Y. (2017) Heat-Induced Bubble Expansion as a Route to Increase the Porosity of Foam-Templated Bio-based Macroporous Polymers, Polymer, 118, pp.97-106. https://doi.org/10.1016/j.polymer.2017.04.058
  17. Tomicevic, Z., Kodvanj, J., Hild, F. (2016) Characterization of the Nonlinear Behavior of Nodular Graphite Cast Iron via Inverse Identification-Analysis of Uniaxial Tests, Eur. J. Mech.-A/Solids, 59, pp.140-154. https://doi.org/10.1016/j.euromechsol.2016.02.010