• Title/Summary/Keyword: 열경화

Search Result 385, Processing Time 0.037 seconds

Thermal and UV Curing of Vacuum Deposited Film of Acetylene Substituted Fluorenes (아세틸렌기가 치환된 플루오렌 증착박막의 열 및 자외선 경화)

  • 정상현;김정수;강영구;이창진
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.327-333
    • /
    • 2001
  • Acetylene substituted fluorenes such as 2-ethynylfluorene and 2,7-diethynyl-fluorene were synthesized and thin films were prepared by the vacuum deposition. Curing of these fluorene derivatives could be achieved by heat treatment and UV irradiation. The curing temperature of 2-ethynylfluorene and 2,7-diethynylfluorene were found to be 231 and $198^{\circ}C$, respectively. The cured poly(2-ethynylfluorene) and poly(2,7-diethynylfluorene) started to decompose at 280 and $ 385^{\circ}C$, respectively. Fluorescent characteristics of the cured films were similar to those of monomers, but fluorescent efficiency of the film was decreased about 3 to 10 fold.

  • PDF

The Evaluation of the thermal degradation and the degree of cure of glass/epoxy composite by ultrasonic technique (복합재료의 열화도 및 경화도에 따른 초음파 특성 연구)

  • 강길호;최원종;박상윤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.33-40
    • /
    • 2003
  • The initial thermal degradation of polymer matrix composite is not observed easily. At the beginning of thermal degradation of polymer matrix composites, phase transformation such as chain scission, oxidation occur, and then micro delamination is produced in matrix and interface between matrix and fiber before blistering. Initial heat damage deteriorate mechanical properties of composites. We presented the detection method of the initial heat damage of composites conveniently using ultrasonic technique. Absorption coefficient and material velocity was measured with thermal degradation and degree of cure. The more thermal degradation was progressed, the more absorption coefficient was increased. When the cure temperature is more high, the absorption coefficient of cured composite is increased and material velocity is decreased. We concluded that cure temperature is more high, the defects such as void is increased and molecular structure cured at high temperature has cross-linking structure which is more absorb the ultrasonic waves.

A Study on Formation and Thermal Decomposition Kinetics of PU Elastomers by Dynamic DSC and TGA Analysis (Dynamic DSC 및 TGA 열분석을 이용한 PU Elastomer의 중합반응 및 열분해 반응 Kinetics에 관한 연구)

  • Yoon, Soo-Koong;Ahn, Won-Sool
    • Elastomers and Composites
    • /
    • v.42 no.1
    • /
    • pp.47-54
    • /
    • 2007
  • Reaction kinetics of polyurethane elastomers (PU) were studied using dynamic DSC and TGA for three PU samples of general purpose (Sample A), high temperature cross-likable CASE purpose with MOCA (Sample B), and RT cross-likable CASE purpose grade (Sample C). From DSC results, sample with MOCA(Sample B) showed lower shift of peak temperature, while showing broader thermograms than those of general purpose grade (Sample A). On the other hand, RT cross-linkable PU grade (Sample C) showed an interesting double mode reaction patterns, i.e., a lower temperature reaction at about $70\;^{\circ}C$, and a higher temperature reaction in the range of $140{\sim}170\;^{\circ}C$, indicating that it requires 2-step reaction process in order to complete the reaction. Once the cross-linking reaction completed, however, TGA results showed that all the samples would be considered to have similar chemical structures, showing similar decomposition processes. Sample C, especially, had showed decomposition properties of both Sample A and Sample B. Formation activation energies calculated from Kissinger method showed 10.39, 65.85, 36.52(Low $T_p$) and 18.21(High $T_p$) kcal/mol, while decomposition activation energies were 31.94, 30.84, 24.16 kcal/mol, respectively.

Effect of Hardening Accelerators on the Adiabatic Temperature property Properties of Precast Concrete and FEM analysis for Evaluating the Crack Performance (경화촉진제를 사용한 프리캐스트 콘크리트의 단열온도특성 및 FEM해석에 의한 균열성능 평가에 관한 연구)

  • Min, Tae-Beom;Cho, In-Sung;Mun, Young-Bum;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • In this study, initial crack index was evaluated by FEM analysis to find the crack propagation from hydration heat in precast concrete. As results, as the usage of hardening accelerator increased, initial compressive strength increased and setting time was shortened. Additionally, as amounts of hardening accelerators increased, the central temperature of concrete increased and the time to reach the highest temperature was shortened. It was demonstrated that the hardening accelerators accelerated the hydration reaction of cement, and caused the increase of hydration heat within the short period of time. Furthermore, the crack index for evaluating the heat level was performed by FEM. As results, there was no problem about the cracks, despite of the growth of initial high hydration heat. This is because of the increased tensile strength that is large enough to sustain the thermally induced-stress.

Numerical Analysis Method of Overlay Model for Material Nonlinearity Considering Strain Hardening (변형률 경화를 고려한 오버레이 모델의 재료비선형 수치해석기법)

  • Baek, Ki Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.291-301
    • /
    • 2007
  • The overlay model is a certain kinds of numerical analysis method to present the material non-lineariy which is represented the baushinger effect and the strain hardening. This model simulates the complex behavior of material by controlling the properties of the layers which like the hardening ratio, the section area and the yield stress. In this paper, the constitutive equation and plastic flow rule of each layer which are laid in the plane stress field are obtained by using the thermodynamics. Two numerical examples were tested for the validity of proposed method in uniaxial stress and plane stress field with comparable experimental results. The only parameter for the test is the yield stress distribution of each layers.

Dielectric Cure Monitoring of Thermosetting Matrix Composites (열경화성 수지 복합재료의 유전 정화 모니터링)

  • Kim, Hyoung-Geun;Lee, Dai-Gil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.409-417
    • /
    • 2003
  • Cure monitoring can be used to improve the quality and productivity of thermosetting resin matrix composite products during their manufacturing process. In this work, the sensitivity of dielectrometry was improved by adequate separation the efforts of sensor and externals on the measured signal. A new algorithm to obtain the degree of cure during dielectric cure monitoring of glass/polyester and glass/epoxy composites was developed by employing a function of both temperature and dissipation factor, in which five cure monitoring parameters were used to calculate the degree of cure. The decreasing pattern of dissipation factor was compared with the relationships between the degree of cure and the resin viscosity. The developed algorithm might be employed for the in situ cure monitoring of thermosetting resin composites.

Mechanical Properties of Low Temperature and Fast Cure Epoxy with Various Mercaptans (Mercaptan 경화제에 의한 저온속경화 에폭시의 열적 기계적 물성)

  • Kim, Won Young;Eom, Se Yeon;Seo, Sang Bum;Lee, Kee Yoon
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.557-562
    • /
    • 2013
  • The thermal expansion and mechanical properties of diglycidyl ether of bisphenol A (DGEBA) with mercaptan hardeners were studied by a comparative method with an amine-adduct type hardener. Thermal expansion and dynamic mechanical properties were measured by thermo mechanical analysis (TMA) and dynamic mechanical ananlysis (DMA), respectively. The $T_g$ and the coefficient of thermal expansion (CTE) of epoxy/amine-adduct type hardener system were $82.6^{\circ}C$ and 71.2 $ppm/^{\circ}C$, respectively. As the number of -SH functional group of mercaptan hardener increased, the $T_g$ rapidly decreased and gradually increased up to ca. $80^{\circ}C$ and the CTE under the $T_g$ rapidly increased to ca. 200 $ppm/^{\circ}C$ from 80 $ppm/^{\circ}C$ and decreased to ca. 100 $ppm/^{\circ}C$. The crosslinking density of epoxy with amine-adduct type hardener was ca.1.5 $mol/cm^3$, while that of epoxy with mercaptan hardeners increased from 1.0 to 1.7 $mol/cm^3$, as the number of -SH functional group increased. The storage modulus can increase up to 2700MPa at $30^{\circ}C$.

Thermal Decomposition Activation Energy of Liquid Crystalline Epoxy using Cationic Initiator (양이온 개시제를 이용한 열경화성 액정 에폭시의 열분해 활성화에너지)

  • Jung, Ye Ji;Hyun, Ha Nuel;Cho, Seung Hyun
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.180-185
    • /
    • 2021
  • Due to the formation of random three dimensional network structure, which cause a lot of scattering of phonons, the thermal conductivity is low when the liquid crystalline epoxy is cured with amine-based curing agent. This problem is solved by using a cationic initiator that can make mesogen groups to be stacked structure. In this experiment, the thermal stability is compared by investigating the activation energy of isothermal decomposition through TGA of an epoxy using an amine-based curing agent and a cationic initiator. As a result, the energy of the activation of the epoxy using a cationic initiator is high. Compared with the previous experiments, the thermal stability is similar to the thermal conductivity.

A Study on the Thermo-mechanical Characteristics and Adhesion Reliability of Anisotropic Conductive Films Depend on the Curing Methods of Epoxy Resins (에폭시 레진의 경화방법에 따른 이방성 전도필름의 접합신뢰성 및 열적기계적 특성 변화)

  • Gil, Man-Seok;Seo, Kyoung-Won;Kim, Jae-Han;Lee, Jong-Won;Jang, Eun-Hee;Jeong, Do-Yeon;Kim, Su-Ja;Kim, Jeong-Soo
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.191-197
    • /
    • 2010
  • To improve the curing method of anisotropic conductive film (ACF) at low temperature, it was studied to replace the thermal latent curing agent of imidazole compounds by the curing agent of cationically initiating type. Thermo-mechanical properties such as glass transition temperature, storage modulus, and coefficient of thermal expansion were investigated for the analysis of curing behavior. The reliability of ACF were observed in thermal cycle and high temperature-high humidity test. ACF using cationic initiator showed faster curing, lower CTE, and higher $T_g$ than the case of using imidazole curing agent, which is important for the high temperature stability. Furthermore, ACF using cationic initiator maintained a stable contact resistance in reliability test, although it was cured at low temperature and fast rate. With these results, it was confirmed that the curing method of epoxy had great effect on thermo-mechanical properties and reliability of ACF.