The purpose of this study is to review the role of dragging in dynamic geometry environments. Dragging is a kind of dynamic representations that dynamically change geometric figures and enable to search invariances of figures and relationships among them. In this study dragging in dynamic geometry environments is divided by three perspectives: dynamic representations, instrumented actions, and affordance. Following this review, six conclusions are suggested for future research and for teaching and learning geometry in school geometry as well: students' epistemological change of basic geometry concepts by dragging, the possibilities to converting paper-and-pencil geometry into experimental mathematics, the role of dragging between conjecturing and proving, geometry learning process according to the instrumental genesis perspective, patterns of communication or discourse generated by dragging, and the role of measuring function as an affordance of DGS.
The study tries to differentiate the levels of mathematical reasoning from inductive reasoning to formal reasoning for teaching gradually. Because the formal point of view without the relation to objects has limitations in the creation of a new knowledge, our mathematics education needs consider the such characteristics. We propose an intuitive level of proof related in concrete operations and perceptual experiences as an intermediating step between inductive and formal reasoning. The key activity of the intuitive level is having insight on the generality of reasoning. The details of the process should pursuit the direction for going away from objects and near to formal reasoning. We need teach the mathematical reasoning gradually according to the appropriate level of reasoning more differentiated.
It tends to be emphasized that mathematics is the important discipline to develop students' mathematical reasoning abilities such as deduction, induction, analogy, and visual reasoning. This study is aimed for investigating the present state about mathematical reasoning in secondary school. We survey teachers' opinions and analyze the results. The results are analyzed by frequency analysis including percentile, t-test, and MANOVA. Results are the following: 1. Teachers recognized mathematics as knowledge constructed by deduction, induction, analogy and visual reasoning, and evaluated their reasoning abilities high. 2. Teachers indicated the importances of reasoning in curriculum, the necessities and the representations, but there are significant difference in practices comparing to the former importances. 3. To evaluate mathematical reasoning, teachers stated that they needed items and rubric for assessment of reasoning. And at present, they are lacked. 4. The hindrances in teaching mathematical reasoning are the lack of method for appliance to mathematics instruction, the unpreparedness of proposals for evaluation method, and the lack of whole teachers' recognition for the importance of mathematical reasoning
Journal of Elementary Mathematics Education in Korea
/
v.20
no.1
/
pp.131-148
/
2016
Mathematical formal justification may be seen as a bridge towards the proof. By requiring the mathematically gifted students to prove the generalized patterned task rather than the implementation of deductive justification, may present challenges for the students. So the research questions are as follow: (1) What are the difficulties the mathematically gifted elementary students may encounter when formal justification were to be shifted into a generalized form from the given patterned challenges? (2) How should the teacher guide the mathematically gifted elementary students' process of transition to formal justification? The conclusions are as follow: (1) In order to implement a formal justification, the recognition of and attitude to justifying took an imperative role. (2) The students will be able to recall previously learned deductive experiment and the procedural steps of that experiment, if the mathematically gifted students possess adequate amount of attitude previously mentioned as the 'mathematical attitude to justify'. In addition, we developed the process of questioning to guide the elementary gifted students to formal justification.
Journal of Elementary Mathematics Education in Korea
/
v.14
no.1
/
pp.65-80
/
2010
The aims of our study are to investigate the nature of mathematical reasoning and the teaching of mathematical reasoning in school mathematics. We analysed the process of shaping deduction in ancient Greek based on Netz's study, and discussed on the comparison between his study and Freudenthal's local organization. The result of our analysis shows that mathematical reasoning in elementary school has to be based on children's natural language and their intuitions, and then the mathematical necessity has to be formed. And we discussed on the sequences and implications of teaching of the sum of interior angles of polygon composed the discovery by induction, justification by intuition and logical reasoning, and generalization toward polygons.
This study is based on the recognition that teacher educators have to focus their attention on developing pre-service teachers' statistical reasoning for statistics education of school mathematics. This paper investigated knowledge on pre-service teachers' statistical reasoning. Statistical Reasoning Assessment (SRA) is performed to find out pre-service teachers' statistical reasoning ability. The research findings are as follows. There was meaningful difference in the statistical area of statistical reasoning ability with significant level of 0.05. This proved that 4 grades pre-service teachers were more improve on statistical reasoning than 2 grades pre-service teachers. Even though most of the pre-service teachers ratiocinated properly on SRA, half of pre-service teachers appreciated that small size of sample is more likely to deviate from the population than the large size of sample. A few pre-service teachers have difficulties in understanding "Correctly interprets probabilities(be able to explain probability by using ratio" and "Understands the importance of large samples(A small sample is more likely to deviate from the population)".
The semiotic approach to the mathematics education has been studied in last 20 years by PME, ICME conferences. New cultural developments in multi-media, digital documents and digital arts and cultures may influence mathematical education and teaching and learning activities. Hence semiotical interest in the mathematics education research and practice will be increasing. In this paper the basic ideas of semiotics, such as Peirce triad and Saussure's dyad, are introduced with some mathematical applications. There is some similarities between traditional research topics for concept, representation and social construction in mathematics education research and semiotic approach topics for the same subjects. some semiotic applications for an arithmetic problem for work, induction, deduction and abduction syllogisms with respect to Peirce's triad, its meaning in scientific discoveries and learning in geometry and symmetry.
The purpose of this study is to analyze characteristics of problem solving in mathematics for gifted students through case study on solving the mathematical problem for gifted students, and to investigate what are relationships with the cognitive and affective characteristics. To this end, this study was to analyze the characteristics on the problem solving in mathematics by using qualitative research method after it selected two students who had specific education for brilliant students. As a result, this study has shown that it had high preference for question with clear answer, high preference for individual inquiry learning, high adhesion to answer for question, and high adhesion for assignment on characteristics of process of problem solving, but there was much difference in spirit of competition. As to the characteristics of thoughts in problem solving, this study has shown that it had high grasp capacity, intuitive insight, and capacity for visualization, but there were differences in capacity for generalization and adaptability. However, both two students had low values in deductive thought. In addition, as to the home environment and cognitive and affective characteristics, they were not related to the characteristics on problem solving directly, but it has shown that it affected each other indirectly. As to the conclusion of this study, this researcher thinks that it will be valuable documentation in order to improve curriculum, development of textbooks, and teaching method for special education for the gifted students and education for secondary mathematics.
The purpose of this study is to confirm constructivists' assumption that when a little low level learners are taken in learner-centered instruction based on a constructivism they can also construct knowledge by themselves. To achieve this purpose, the researchers compare the effects of learner-centered instruction based on the constructivism and teacher-centered instruction based on the objective epistemology where second graders learn multiplication facts through the each treatment on learners' reasoning ability and achievement. Some conclusions are drawn from results as follows. First, learner-centered instruction based on a constructivism has significant effect on learners' reasoning ability. Second, learner-centered instruction has slightly positive effect on learners' deductive reasoning ability. Third, learner-centered instruction has more an positive influence on understanding concepts and principles of not-presented mathematical knowledge than teacher-centered instruction when implementing it with a little low level learners.
This study is based on the problem that most middle school students cannot recognize the generality of geometrical theorems even after having proved them. By considering this problem from the point of view of empirical verification, the particularity of geometrical representations, and the role of geometrical variables, we suggest that some experiences in dynamic geometry environment (DGE) can help students to recognize the generality of geometrical theorems. That is, this study aims to observe students' cognitive changes related to their recognition of the generality and to provide some educational implications by making students experience some geometrical explorations in DGE. To do so, we selected three middle school students who couldn't recognize the generality of geometrical theorems although they completed their own proofs for the theorems. We provided them exploratory activities in DGE, and observed and analyzed their cognitive changes. Based on this analysis, we discussed the effects of DGE on studensts' recognition of the generality of geometrical theorems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.