• Title/Summary/Keyword: 억제인자

Search Result 1,336, Processing Time 0.031 seconds

EFFECT OF RED GINSENG POWDER ON LIPOLYTIC AND ANOREXIGENIC FACTOR (TOXOHORMONE-L) FROM CANCEROUS ASCITES FLUID (암의 복수액에 존재하는 지방분해 및 식욕감퇴 인자에 미치는 고려인삼의 영향)

  • Okuda Hiromichi;Masuno Hiroshi;Lee Song Jae
    • Proceedings of the Ginseng society Conference
    • /
    • 1984.09a
    • /
    • pp.145-152
    • /
    • 1984
  • Toxohormone-L (THL) elicited fatty acid release from rat epididymal adipose tissue, which is present in cancerous ascites fluids. In this study, the effect of ginseng powder on lipolysis induced by Toxohormane-L, and ACTH was studied. Korean ginseng selectively inhibited Toxohormone-L induced lipolysis, but did not inhibit ACTH-induced lipolysis.

  • PDF

Insulin-like Growth Factor-I Modulates BDNF Expression by Inhibition of Histone Deacetylase in C2C12 Skeletal Muscle Cells (C2C12 골격근 세포에서 히스톤 탈 아세틸 효소의 억제가 인슐린 유사성장인자(IGF-I)에 의한 BDNF 발현 조절에 미치는 영향)

  • Kim, Hye Jin;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.879-887
    • /
    • 2017
  • It is well established that brain-derived neurotrophic factor (BDNF) is expressed not only in the brain but also in skeletal muscle, and is required for normal neuromuscular system function. Histone deacetylases (HDACs) and insulin-like growth factor-I (IGF-I) are potent regulators of skeletal muscle myogenesis and muscle gene expression, but the mechanisms of HDAC and IGF-I in skeletal muscle-derived BDNF expression have not been examined. In this study, we examined the effect of IGF-I and suberoylanilide hydroxamic acid (SAHA), a pan-HDAC inhibitor, on BDNF induction. Proliferating or differentiating C2C12 skeletal muscle cells were treated with increasing concentrations (0-50 ng/ml) of IGF-I in the absence or presence of $5{\mu}M$ SAHA for various time periods (3-24 hr). Treatment of C2C12 cells with IGF-I resulted in a dose- and time-dependent decrease in BDNF mRNA expression. However, inhibition of HDAC led to a significant increase in the expression of BDNF mRNA levels. In addition, immunocytochemistry revealed high BDNF protein levels in undifferentiated C2C12 skeletal muscle cells, whether untreated, IGF-I-treated, or exposed to SAHA. These results represent the first evidence that IGF-I can suppress the mRNA and protein expression of BDNF; conversely, SAHA attenuates the effects of IGF-I. Consequently, SAHA upregulates BDNF expression in C2C12 skeletal muscle cells.

Inhibitory Effects and Molecular Mechanism of Adipocyte Differentiation by Rosae laevigata Fructus Ethanol Extracs (금앵자 에탄올 추출물에 의한 3T3-L1 지방세포의 분화억제 효과와 그 메커니즘 규명)

  • Jeong, Hyun Young;Jeong, In Kyo;Nam, So Yeon;Yun, Hee Jung;Kim, Byung Woo;Kwon, Hyun Ju
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.89-97
    • /
    • 2016
  • Obesity is caused by excess accumulation of body fat and contributes to various pathological disorders such as diabetes, hypertension, cardiovascular disease, and cancer. In this study, we investigated the effect of a 30% ethanol extract of Fructus Rosae laevigata (RLE) on adipogenesis in 3T3-L1 adipocytes, measured by triglyceride accumulation and expression of adipogenesis-related transcription factors during differentiation of pre-adipocytes into adipocytes. RLE decreased the intracellular triglyceride contents (assessed by Oil Red-O staining) in a dose-dependent manner. It also downregulated the expression of adipogenic transcription factors and inhibited cell proliferation during the mitotic clonal expansion phase of adipocyte differentiation by inducing G1 phase arrest. We investigated the alterations in the levels of G1 phase arrest-related proteins. The expression of p21 protein significantly increased, while the levels of Cyclin E, Cdk2, and phospho-Rb decreased in a dose-dependent manner in 3T3-L1 cells treated with RLE. These results suggest that RLE inhibits the differentiation of 3T3-L1 adipocytes by suppressing the expression of adipogenic transcription factors and inducing G1 phase arrest in the early stages of adipocyte differentiation.

G1 Arrest of the Cell Cycle by Gomisin N, a Dibenzocyclooctadiene Lignan, Isolated from Schizandra chinensis Baill in Human Leukemia U937 Cells (오미자에서 분리된 dibenzocyclooctadiene lignan의 일종인 gomisin N에 의한 인체혈구암세포의 세포주기 G1 arrest 유발)

  • Park, Cheol;Hwang, Hye-Jin;Choi, Byung-Tae;Choi, Tae-Hyun;Kim, Byung-Woo;Choi, Young-Whan;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.977-982
    • /
    • 2010
  • We investigated the anti-cancer effects of two dibenzocyclooctadiene lignans, gomisin A and gomisin N, isolated from Schizandra chinensis Baill, in human promyelocytic U937 cells. Gomisin N, but not gomisin A, inhibited cell growth in a concentration-dependent manner, which was associated with the induction of G1 arrest of the cell cycle. G1 arrest induced by gomisin N was correlated with down-regulation of cyclin E, cyclin-dependent kinase (Cdk) 2 and Cdk4, and a concomitant up-regulation of Cdk inhibitors such as p16 (INK4A) and p21 (WAF1/CIP1). Furthermore, gomisin N inhibited phosphorylation of retinoblastoma protein (pRB) and p130, and expression of transcription factor E2Fs. The results indicated that growth inhibition by gomisin N is related to cell cycle arrest at G1 in U937 cells and these findings suggest that gomisin N may be a useful chemotherapeutic agent.

Inhibitory Effect of Naringenin on MMP-9 Activity and Expression in HT-1080 Cells (Naringenin이 NF-$\kappa$B, AP-1 억제를 통한 MMP-9 활성 및 발현 억제 효과)

  • Chae, Soo-Chul;Kho, Eun-Gyeong;Seo, Eun-Sun;Ryu, Geun-Chang;Na, Myung-Suk;Kim, In-Suk;Lee, Jong-Bin
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.1
    • /
    • pp.58-65
    • /
    • 2009
  • The chemopreventive effects of naringenin derived from citrus on tumor migration and the possible mechanisms involved in this protection were investigated in HT-1080 tumor cells. In this study, we found that naringenin reduced phorbol 12-myristate 13-acetate (PMA)-enhanced matrix metalloproteinases (MMP)-9 activation in a dose-dependant manner and further inhibited HT-1080 cell migration. In addition, naringenin suppressed PMA-enhanced expression of MMP-9 protein, mRNA and transcription activity levels through suppression of nuclear factor $\kappa$B (NF-$\kappa$B) activation and activator protein-1 (AP-1) translocation without changing tissue inhibitor of metalloproteinase (TIMP)-1 level. Therefore, our results suggested that the inhibitory effects of naringenin on MMP-9 activation, relation of tumor migration in vitro possibly involve mechanisms related to its ability to suppress PMA-enhanced MMP-9 gene and protein expression through NF-$\kappa$B activation and AP-1 translocation. Overall, naringenin may be a valuable anti-invasive drug candidate for cancer therapy.

Anti-inflammatory Effect of the Robinia pseudoacacia L. High Temperature Extract (아까시 나무 고온추출물의 항염증 효과)

  • Nho, Jong Hyun;Kang, Byoung Man;Jung, Won Seok
    • Korean Journal of Plant Resources
    • /
    • v.31 no.4
    • /
    • pp.294-302
    • /
    • 2018
  • This study was conducted to compare anti-inflammatory effect of Robinia pseudoacacia L. using different extraction methods (water extraction, ethanol extraction and high temperature extraction). We investigated anti-inflammatory effect of Robinia pseudoacacia L. extract (RP1, water extract; RP2, ethanol extract; RP3, high temperature extract) on lipopolysaccharide (LPS)-stimulated inflammation using Raw 264.7 cell. Cells were treated with various concentrations (12.5, 25, 50, 100 or $200{\mu}g/m{\ell}$) of water extract, ethanol extract and high temperature extract. Cytotoxicity was not observed on Raw 264.7 cells, LPS-stimulated production of NO (nitric oxide), $PGE_2$ (prostaglandin $E_2$) and cytokines ($TNF-{\alpha}$, IL-6 and $IL-1{\beta}$) was reduced by RP3 treatment more than RP1 and RP2. In conclusion, these results indicated that inflammation on Raw 264.7 cells was improved by RP3. Treatment of RP3 could be used to natural medicine for improving inflammatory response. However, further experiment is required to observe how the high temperature extraction at $500^{\circ}C$ for 48 h influences on alteration of active ingredient in Robinia pseudoacacia L., and conducts the inflammation signal pathway on Raw 264.7 cells.

The Cross-talk Mechanisms of Constitutive Androstane Receptor (CAR) in the Regulation of its Activity, Energy Metabolism, Cellular Proliferation and Apoptosis (Constitutive Androstane Receptor (CAR)의 활성, 에너지 대사 및 세포의 증식과 사멸의 조절에 대한 CAR의 cross-talk 기전)

  • Min, Gyesik
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.211-220
    • /
    • 2020
  • The activity of CAR can be regulated not only by ligand binding but also by phosphorylation of regulatory factors involved in extracellular signaling pathways, cross-talk interactions with transcription factors, and the recruitment, degradation, and expression of coactivators and corepressors. This regulation of CAR activity can in turn have effects on the control of diverse physiological homeostasis, including xenobiotic and energy metabolism, cellular proliferation, and apoptosis. CAR is phosphorylated by the ERK1/2 signaling pathway, which causes formation of a complex with Hsp-90 and CCRP, leading to its cytoplasmic retention, whereas phenobarbital inhibits ERK1/2, which causes dephosphorylation of the downstream signaling molecules, leading to the recruitment to CAR of the activated RACK-1/PP2A components for the dephosphorylation, nuclear translocation, and the transcriptional activation of CAR. Activated CAR cross-talks with FoxO1 to induce inhibition of its transcriptional activity and with PGC-1α to induce protein degradation by ubiquitination, resulting in the transcriptional suppression of PEPCK and G6Pase involved in gluconeogenesis. Regulation by CAR of lipid synthesis and oxidation is achieved by its functional cross-talks, respectively, with PPARγ through the degradation of PGC-1α to inhibit expression of the lipogenic genes and with PPARα through either the suppression of CPT-1 expression or the interaction with PGC-1α each to induce tissue-specific inhibition or stimulation of β-oxidation. Whereas CAR stimulates cellular proliferation by suppressing p21 expression through the inhibition of FoxO1 transcriptional activity and inducing cyclin D1 expression, it suppresses apoptosis by inhibiting the activities of MKK7 and JNK-1 through the expression of GADD45B. In conclusion, CAR is involved in the maintenance of homeostasis by regulating not only xenobiotic metabolism but also energy metabolism, cellular proliferation, and apoptosis through diverse cross-talk interactions with extracellular signaling pathways and intracellular regulatory factors.

Effects of Bombusae concretio Salicea on Mouse Calvarial Bone Resorption (마우스의 Calvarial Bone Resorption에 미치는 천축황(天竺黃)의 영향)

  • Kim, Seong-Jae;Jeong, Ji-Cheon;Yoon, Cheol-Ho
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.398-407
    • /
    • 2004
  • 목적 :천축황(天竺黃)이 골대사에 미치는 영향을 검토하고자 생쥐의 골세포를 이용하여 골흡수 억제 효과를 관찰하였다. 방법 :$Interleukin-1{\beta}\;(IL-1{\beta})$는 시험관내에서 osteoblast를 조절하는 것으로 알려져 있는데, 천축황(天竺黃)이 $IL-1{\beta}$ 유발된 $PGE_2$, 생성에 관한 영향을 관찰하였다. 결과 :천축황(天竺黃)는 osteoblast체 독성을 나타내지 않았으며, $PGE_2$ 생성을 억제하였다. 특히, 천축황(天竺黃)을 1시간동안 전처리한 경우 $PGE_2$의 합성을 억제하여 골세포 보호효과가 인정되었으며, 또한 골 흡수인자인 $IL-1{\beta}$에 의해 유발된 alkaline phosphatase의 활성도 억제하였는데, 천축황(天竺黃) 전처리후 16시간째에 훨씬 높은 억제효과를 나타내었다. 유사하게 천축황(天竺黃)을 1시간 동안 전처리한 경우 osteocalcin의 생성이 증가되었다. 또한, calcitonin이 나타내는 osteoclast및 osteoblast 함유세포에서 골 흡수를 억제하였다. 결론 :천축황(天竺黃)은 osteoclast가 매개된 골흡수를 억제하는 효과가 인정되었다.

  • PDF

Artemisia scoparia Inhibits Adipogenesis in 3T3-L1 Pre-adipocytes by Downregulating the MAPK Pathway (비쑥 추출물이 3T3-L1 지방세포 분화 및 MAPK 신호 전달 경로에 미치는 영향)

  • Oh, Jung Hwan;Karadeniz, Fatih;Seo, Youngwan;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.28 no.9
    • /
    • pp.999-1006
    • /
    • 2018
  • Obesity is epidemic worldwide and has reportedly been linked to the progression of several metabolic and cardiovascular diseases. The natural products are decreasing the side effects of medicines used for obesity and also have health benefits dut to their numerous bioactive compounds. In this context, Artemisia scoparia is a widespread plant that has been suggested as possessing various types of bioactivity. In this study, the crude extract from A. scoparia (ASE) was tested for its ability to suppress adipogenesis in mouse 3T3-L1 pre-adipocytes. The molecular pathway by which ASE affects differentiation of 3T3-L1 cells was also investigated. The introduction of ASE to differentiating 3T3-L1 pre-adipocytes resulted in suppressed adipogenesis, as confirmed by decreased intracellular lipid accumulation. The differentiating cells treated with 10 and $100{\mu}g/ml$ of ASE showed 21.9 and 29.0% less lipid accumulation, respectively, than untreated adipocytes. In addition, the results indicated that ASE treatment lowered the expression of the adipogenesis-related factors $PPAR{\gamma}$, $C/EBP{\alpha}$, and SREBP-1c. Furthermore, treating with ASE notably decreased levels of phosphorylated p38, ERK, and JNK in 3T3-L1 adipocytes. These results indicate that ASE exhibits significant anti-adipogenesis activity by downregulating the MAPK and $PPAR{\gamma}$ pathways during the differentiation of 3T3-L1 pre-adipocytes. Therefore, A. scoparia may be a potential source of natural products against obesity.

Suppressive Effects of Ethyl Acetate Fraction from Green Tea Seed Coats on the Production of Cell Adhesion Molecules and Inflammatory Mediators in Human Umbilical Vein Endothelial Cells (Human Umbilical Vein Endothelial Cells에서 녹차씨껍질 에틸아세테이트 추출물의 세포부착물질 및 염증매개인자 생성 억제효과)

  • Noh, Kyung-Hee;Kim, Jong-Kyung;Song, Young-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.635-641
    • /
    • 2011
  • Anti-atherogenic effects in tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-stimulated human umbilical vein endothelial cells (HUVEC) are involved with suppressed oxidative stress, cell adhesion molecules, and pro-inflammatory factors. The aim of this study was to determine whether green tea seed coat ethyl acetate fraction (GTSCE) could modulate cell adhesion molecules and inflammatory mediators in HUVEC stimulated with TNF-${\alpha}$. Nitric oxide (NO) production was significantly increased in TNF-${\alpha}$-stimulated HUVEC compared to TNF-${\alpha}$ only treated cells. The NO that is produced by endothelial nitric oxide synthase dilates blood vessels and has protective effects against platelet and leucocyte adhesion. GTSCE at 25, 50, 75, and $100\;{\mu}g$/mL significantly (p<0.05) reduced TNF-${\alpha}$ production. GTSCE significantly (p<0.05) inhibited soluble vascular cell adhesion molecule-1 level, in a dose-dependent manner. Monocyte chemoattractant protein-1 level was also significantly (p<0.05) inhibited by GTSCE treatment at $75\;{\mu}g$/mL compared to the TNF-${\alpha}$-only treated group. Total antioxidant capacity by GTSCE was significantly (p<0.05) enhanced compared to the TNF-${\alpha}$-only treated group. These results suggest that GTSCE can inhibit the production of cell adhesion molecules and inflammatory mediators and could be used as a candidate bioactive material to prevent the development of atherosclerosis.