Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.2.211

The Cross-talk Mechanisms of Constitutive Androstane Receptor (CAR) in the Regulation of its Activity, Energy Metabolism, Cellular Proliferation and Apoptosis  

Min, Gyesik (Department of Nursing, College of Life Science, Gyeongnam National University of Science & Technology)
Publication Information
Journal of Life Science / v.30, no.2, 2020 , pp. 211-220 More about this Journal
Abstract
The activity of CAR can be regulated not only by ligand binding but also by phosphorylation of regulatory factors involved in extracellular signaling pathways, cross-talk interactions with transcription factors, and the recruitment, degradation, and expression of coactivators and corepressors. This regulation of CAR activity can in turn have effects on the control of diverse physiological homeostasis, including xenobiotic and energy metabolism, cellular proliferation, and apoptosis. CAR is phosphorylated by the ERK1/2 signaling pathway, which causes formation of a complex with Hsp-90 and CCRP, leading to its cytoplasmic retention, whereas phenobarbital inhibits ERK1/2, which causes dephosphorylation of the downstream signaling molecules, leading to the recruitment to CAR of the activated RACK-1/PP2A components for the dephosphorylation, nuclear translocation, and the transcriptional activation of CAR. Activated CAR cross-talks with FoxO1 to induce inhibition of its transcriptional activity and with PGC-1α to induce protein degradation by ubiquitination, resulting in the transcriptional suppression of PEPCK and G6Pase involved in gluconeogenesis. Regulation by CAR of lipid synthesis and oxidation is achieved by its functional cross-talks, respectively, with PPARγ through the degradation of PGC-1α to inhibit expression of the lipogenic genes and with PPARα through either the suppression of CPT-1 expression or the interaction with PGC-1α each to induce tissue-specific inhibition or stimulation of β-oxidation. Whereas CAR stimulates cellular proliferation by suppressing p21 expression through the inhibition of FoxO1 transcriptional activity and inducing cyclin D1 expression, it suppresses apoptosis by inhibiting the activities of MKK7 and JNK-1 through the expression of GADD45B. In conclusion, CAR is involved in the maintenance of homeostasis by regulating not only xenobiotic metabolism but also energy metabolism, cellular proliferation, and apoptosis through diverse cross-talk interactions with extracellular signaling pathways and intracellular regulatory factors.
Keywords
Apoptosis; cellular proliferation; constitutive androstane receptor; cross-talk mechanisms; energy metabolism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dong, B., Saha, P. K., Huang, W., Chen, W., Abu-Elheiga, L. A., Wakil, S. J., Stevens, R. D., Ilkayeva, O., Newgard, C. B., Chan, L. and Moore, D. D. 2009. Activation of nuclear receptor CAR ameliorates diabetes and fatty liver disease. Proc. Natl. Acad. Sci. 106, 18831-18836.   DOI
2 Dring, M. M., Goulding, C. A., Trimble, V. I., Keegan, D., Ryan, A. W., Brophy, K. M., Smyth, C. M., Keeling, P. W., O'Donoghue, D., O'Sullivan, M., O'Morain, C., Mahmud, N., Wikstrom, A. C., Kelleher, D. and McManus, R. 2006. The pregnane X receptor locus is associated with susceptibility to inflammatory bowel disease. Gastroenterology 130, 341-348.   DOI
3 Gao, J., He, J. H., Zhai, Y. G., Wada, T. R. and Xie, W. 2009. The constitutive androstane receptor is an anti-obesity nuclearreceptor that improves insulin sensitivity. J. Biol. Chem. 284, 25984-25992.   DOI
4 Gao, J. and Xie, W. 2010. Pregnane X receptor and constitutive androstane receptor at the crossroads of drug metabolism and energy metabolism. Drug Metab. Dispos. 38, 2091-2095.   DOI
5 Gao, J., Yan, J., Xu, M., Ren, S. and Xie, W. 2015. CAR suppresses hepatic gluconeogenesis by facilitating the ubiquitination and degradation of PGC1alpha. Mol. Endocrinol. 29, 1558-1570.   DOI
6 Greer, E. L. and Brunet, A. 2005. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24, 7410-7425.   DOI
7 Gross, B., Pawlak, M., Lefebvre, P. and Staels, B. 2017. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat. Rev. Endocrinol. 13, 36-49.   DOI
8 Guo, D., Sarkar, J., Suino-Powell, K., Xu, Y., Matsumoto, K., Jia, Y., Yu, S., Khare, S., Haldar, K., Rao, M. S., Foreman, J. E., Monga, S. P., Peters, J. M., Xu, H. E. and Reddy, J. K. 2007. Induction of nuclear translocation of constitutive androstane receptor by peroxisome proliferator-activated receptor alpha synthetic ligands in mouse liver. J. Biol. Chem. 282, 36766-36776.   DOI
9 Pavlin, M. R., Brunzelle, J. S. and Fernandez, E. J. 2014. Agonist ligands mediate the transcriptional response of nuclear receptor heterodimers through distinct stoichiometric assemblies with coactivators. J. Biol. Chem. 289, 24771-24778.   DOI
10 Pengfei, Xu., Zhai, Y. and Wang, J. 2018. The role of PPAR and its cross-talk with CAR and LXR in obesity and atherosclerosis. Int. J. Mol. Sci. 19, 1260-1277.   DOI
11 Peter, O., Hongmeiui, C., Chen, Z. and Taosheng, C. 2016. Regulation of PXR and CAR by protein-protein interaction and signaling crosstalk. Expert Opin. Drug Metab. Toxicol. 12, 997-1010.   DOI
12 Puigserver, P., Rhee, J., Donovan, J., Walkey, C. J., Yoon, J. C., Oriente, F., Kitamura, Y., Altomonte, J., Dong, H., Accili, D. and Spiegelman, B. M. 2003. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-$1{\alpha}$ interaction. Nature 423, 550-555.   DOI
13 Rodgers, J. T., Lerin, C., Haas, W., Gygi, S. P., Spiegelman, B. M. and Puigserver, P. 2005. Nutrient control of glucose homeostasis through a complex of PGC-$1{\alpha}$ and SIRT1. Nature 434, 113-118.   DOI
14 Roth, A., Looser, R., Kaufmann, M., Blattler, S. M., Rencurel, F., Huang, W., Moore, D. D. and Meyer, U. A. 2008. Regulatory cross-talk between drug metabolism and lipid homeostasis: constitutive androstane receptor and pregnane X receptor increase Insig-1 expression. Mol. Pharmacol. 73, 1282-1289.   DOI
15 Sanchis-Gomar, F., Garcia-Gimenez, J. L., Gomez-Cabrera, M. C. and Pallardo, F. V. 2014. Mitochondrial biogenesis in health and disease. Molecular and therapeutic approaches. Curr. Pharm. Des. 20, 5619-5633.   DOI
16 Kersten, S. 2014. Integrated physiology and systems biology of PPARalpha. Mol. Metab. 3, 354-371.   DOI
17 Jiang, M. and Xie, W. 2013. Role of the constitutive androstane receptor in obesity and type 2 diabetes: A case study of the endobiotic function of a xenobiotic receptor. Drug Metab. Rev. 45, 156-163.   DOI
18 Kaestner, K. H., Knochel, W. and Martinez, D. E. 2000. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 14, 142-146.
19 Kazantseva, Y. A., Yarushkin, A. A. and Pustylnyak, V. O. 2014. CAR-mediated repression of Foxo1 transcriptional activity regulates the cell cycle inhibitor p21 in mouse livers. Toxicology 321, 73-79.   DOI
20 Kobayashi, K., Sueyoshi, T., Inoue, K., Moore, R. and Negishi, M. 2003. Cytoplasmic accumulation of the nuclear receptor CAR by a tetratricopeptide repeat protein in HepG2 cells. Mol. Pharmacol. 64, 1069-1075.   DOI
21 Locker, J., Tian, J., Carver, R., Concas, D., Cossu, C., Ledda-Columbano, G. M. and Columbano, A. 2003. A common set of immediate-early response genes in liver regeneration and hyperplasia. Hepatology 38, 314-325.
22 Lynch, C., Pan, Y., Li, L., Heyward, S., Moeller, T., Swaan, P. W. and Wang, H. 2014. Activation of the constitutive androstane receptor inhibits gluconeogenesis without affecting lipogenesis or fatty acid synthesis in human hepatocytes. Toxicol. Appl. Pharmacol. 279, 33-42.   DOI
23 Maglich, J. M., Parks, D. J., Moore, L. B., Collins, J. L., Goodwin, B., Billin, A. N., Stoltz, C. A., Kliewer, S. A., Lambert, M. H., Willson, T. M. and Moore, J. T. 2003. Identification of a novel human constitutive androstane receptor (CAR) agonist and its use in the identification of CAR target genes. J. Biol. Chem. 278, 17277-17283.   DOI
24 Stahl, M., Dijkers, P. F., Kops, G. J., Lens, S. M., Coffer, P. J., Burgering, B. M. and Medema, R. H. 2002. The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J. Immunol. 168, 5024-5031.   DOI
25 Sberna, A. L., Assem, M., Gautier, T., Grober, J., Guiu, B., Jeannin, A., Pais de Barros, J. P., Athias, A., Lagrost, L. and Masson, D. 2011. Constitutive androstane receptor activation stimulates faecal bile acid excretion and reverse cholesterol transport in mice. J. Hepatol. 55, 154-161.   DOI
26 Sberna, A. L., Assem, M., Xiao, R., Ayers, S., Gautier, T., Guiu, B., Deckert, V., Chevriaux, A., Grober, J., Le Guern, N., Pais de Barros, J. P., Moore, D. D., Lagrost, L. and Masson, D. 2011. Constitutive androstane receptor activation decreases plasma apolipoprotein B-containing lipoproteins and atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 31, 2232-2239.   DOI
27 Shiraki, T., Sakai, N., Kanaya, E. and Jingami, H. 2003. Activation of orphan nuclear constitutive androstane receptor requires subnuclear targeting by peroxisome proliferator-activated receptor ${\gamma}$ coactivator-1 alpha. A possible link between xenobiotic response and nutritional state. J. Biol. Chem. 278, 11344-11350.   DOI
28 Tontonoz, P. and Spiegelman, B. M. 2008. Fat and beyond: The diverse biology of PPARgamma. Annu. Rev. Biochem. 77, 289-312.   DOI
29 Tzameli, I. and Moore, D. D. 2001. Role reversal: New insights from new ligands for the xenobiotic receptor CAR. Trends Endocrinol. Metab. 12, 7-10.   DOI
30 Tzameli, I., Pissios, P., Schuetz, E. G. and Moore, D. D. 2000. The xenobiotic compound 1, 4-bis[2-(3,5-dichloropyridyloxy)] benzene is an agonist ligand for the nuclear receptor CAR. Mol. Cell. Biol. 20, 2951-2958.   DOI
31 Osabe, M. and Negishi, M. 2011. Active ERK1/2 protein interacts with the phosphorylated nuclear constitutive active/ androstane receptor (CAR; NR1I3), repressing dephosphorylation and sequestering CAR in the cytoplasm. J. Biol. Chem. 286, 35763-35769.   DOI
32 Miao, J., Fang, S., Bae, Y. and Kemper, J. K. 2006. Functional inhibitory cross-talk between constitutive androstane receptor and hepatic nuclear factor-4 in hepatic lipid/glucose metabolism is mediated by competition for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-$1{\alpha}$. J. Biol. Chem. 281, 14537-14546.   DOI
33 Mutoh, S., Osabe, M., Inoue, K., Moore, R., Pedersen, L., Perera, L., Rebolloso, Y., Sueyoshi, T. and Negishi, M. 2009. Dephosphorylation of threonine 38 is required for nuclear translocation and activation of human xenobiotic receptor CAR (NR1I3). J. Biol. Chem. 284, 34785-34792.   DOI
34 Mutoh, S., Sobhany, M., Moore, R., Perera, L., Pedersen, L., Sueyoshi, T. and Negishi, M. 2013. Phenobarbital indirectly activates the Constitutive Active Androstane Receptor (CAR) by inhibition of epidermal growth factor receptor signaling. Sci. Signal. 6, ra31.   DOI
35 Palomer, X., Barroso, E., Pizarro-Delgado, J., Pena, L., Botteri, G., Zarei, M., Aguilar, D., Montori-Grau, M. and Vazquez-Carrera, M. 2018. PPARbeta/delta: A key therapeutic target in metabolic disorders. Int. J. Mol. Sci. 19, 913.   DOI
36 Papa, S., Zazzeroni, F., Bubici, C., Jayawardena, S., Alvarez, K., Matsuda, S., Nguyen, D. U., Pham, C. G., Nelsbach, A. H., Melis, T., De Smaele, E., Tang, W. J., D'Adamio, L. and Franzoso, G. 2004. $Gadd45{\beta}$ mediates the NF-${\kappa}B$ suppression of JNK signalling by targeting MKK7/JNKK2. Nat. Cell Biol. 6, 146-153.   DOI
37 Watkins, R. E., Wisely, G. B., Moore, L. B., Collins, J. L., Lambert, M. H., Williams, S. P., Willson, T. M., Kliewer, S. A. and Redinbo, M. R. 2001. The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity; [mportant structural study providing insight into how PXR detects xenobiotics. Science 292, 2329-2333.   DOI
38 Ueda, A., Hamadeh, H. K., Webb, H. K., Yamamoto, Y., Sueyoshi, T., Afshari, C. A., Lehmann, J. M. and Negishi, M. 2002. Diverse roles of the nuclear orphan receptor CAR in regulating hepatic genes in response to phenobarbital. Mol. Pharmacol. 61, 1-6.   DOI
39 Valero, T. 2014. Mitochondrial biogenesis: Pharmacological approaches. Curr. Pharm. Des. 20, 5507-5509.   DOI
40 Wahli, W. and Michalik, L. 2012. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol. Metab. 23, 351-363.   DOI
41 Wright, E., Busby, S. A., Wisecarver, S., Vincent, J., Griffin, P. R. and Fernandez, E. J. 2011. Helix 11 dynamics is critical for constitutive androstane receptor activity; structural studies of CAR to delineate its constitutive activation. Structure 19, 37-44.   DOI
42 Xi, M. 2019. Crosstalk between nutrients and xenobiotic receptors. Curr. Drug Metab. 20, 1-3.   DOI
43 Xia, J., Liao, L., Sarkar, J., Matsumoto, K., Reddy, J. K., Xu, J. and Kemper, B. 2007. Redundant enhancement of mouse constitutive androstane receptor transactivation by p160 coactivator family members. Arch. Biochem. Biophys. 468, 49-57.   DOI
44 Xiao, L., Wang, J., Jiang, M., Xie, W. and Zhai, Y. 2013. The emerging role of constitutive androstane receptor and its cross talk with liver X receptors and peroxisome proliferator-activated receptor A in lipid metabolism. Vitam. Horm. 91, 243-258.   DOI
45 Chai, X., Zeng, S. and Xie, W. 2013. Nuclear receptors PXR and CAR. Implications for drug metabolism regulation, pharmacogenomics and beyond. Expert Opin. Drug Metab. Toxicol. 9, 253-266.   DOI
46 Ahmadian, M., Suh, J. M., Hah, N., Liddle, C., Atkins, A. R., Downes, M. and Evans, R. M. 2013. PPARgamma signaling and metabolism: the good, the bad and the future. Nat. Med. 19, 557-566.   DOI
47 Barthel, A., Schmoll, D. and Unterman, T. G. 2005. FoxO proteins in insulin action and metabolism. Trends Endocrinol. Metab. 16, 183-189.   DOI
48 Chai, S. C., Cherian, M. T., Wang, Y. M. and Chen, T. 2016. Small-molecule modulators of PXR and. CAR. Biochim. Biophys. Acta. 1859, 1141-1154.   DOI
49 Chen, T., Chen, Q., Xu, Y., Zhou, Q., Zhu, J., Zhang, H., Wu, Q, Xu, J. and Yu, C. 2012. SRC-3 is required for CAR-regulated hepatocyte proliferation and drug metabolism. J. Hepatol. 56, 210-217.   DOI
50 Cherian, M. T., Chai, S. C. and Chen, T. 2015. Small-molecule modulators of the constitutive androstane receptor. Expert Opin. Drug Metab. Toxicol. 11, 1099-1114.   DOI
51 Cherrington, N. J., Hartley, D. P., Li, N., Johnson, D. R. and Klaassen, C. D. 2002. Organ distribution of multidrug resistance proteins 1, 2, and 3 (Mrp1, 2, and 3) mRNA and hepatic induction of Mrp3 by constitutive androstane receptor activators in rats. J. Pharmacol. Exp. Ther. 300, 97-104.   DOI
52 Yamamoto, Y., Moore, R., Flavell, R. A., Lu, B. and Negishi, M. 2010. Nuclear receptor CAR represses $TNF{\alpha}$-induced cell death by interacting with the anti-apoptotic GADD45B. PLoS One 5, e10121.   DOI
53 Xu, P., Hong, F., Wang, J., Cong, Y., Dai, S., Wang, S., Wang, J., Jin, X., Wang, F., Liu, J. and Zhai, Y. 2017. Microbiome remodeling via the montmorillonite adsorption-excretion axis prevents obesity-related metabolic disorders. EBioMedicine 16, 251-261.   DOI
54 Wada, T., Gao, J. and Xie, W. 2009. PXR and CAR in energy metabolism. Trends Endocrinol. Metab. 20, 273-279.   DOI
55 Xu, P., Hong, F., Wang, J., Dai, S., Wang, J. and Zhai, Y. 2018. The CAR agonist TCPOBOP inhibits lipogenesis and promotes fibrosis in the mammary gland of adolescent female mice. Toxicol. Lett. 290, 29-35.   DOI
56 Yoshinari, K., Kobayashi, K., Moore, R., Kawamoto, T. and Negishi, M. 2003. Identification of the nuclear receptor CAR: HSP90 complex in mouse liver and recruitment of protein phosphatase 2A in response to phenobarbital. FEBS Lett. 548, 17-20.   DOI
57 Zelko, I., Sueyoshi, T., Kawamoto, T., Moore, R. and Negishi, M. 2001. The peptide near the C terminus regulates receptor CAR nuclear translocation induced by xenochemicals in mouse liver. Mol. Cell. Biol. 21, 2838-2846.   DOI
58 Zhai, Y., Wada, T., Zhang, B., Khadem, S., Ren, S., Kuruba, R., Li, S. and Xie, W. 2010. A functional cross-talk between liver X receptor-alpha and constitutive androstane receptor links lipogenesis and xenobiotic responses. Mol. Pharmacol. 78, 666-674.   DOI
59 Zhao, Y., Zhang, K., Giesy, J. P. and Hu, J. 2015. Families of nuclear receptors in vertebrate models: Characteristic and comparative toxicological perspective. Sci. Rep. 5, 8554, doi: 10.1038.   DOI
60 Columbano, A., Ledda-Columbano, G. M., Pibiri, M., Cossu, C., Menegazzi, M., Moore, D. D., Huang, W., Tian, J. and Locker, J. 2005. Gadd45 beta is induced through a CAR-dependent, TNF-independent pathway in murine liver hyperplasia. Hepatology 42, 1118-1126.   DOI
61 Ding, X., Lichti, K., Kim, I., Gonzalez, F. J. and Staudinger, J. L. 2006. Regulation of constitutive androstane receptor and its target genes by fasting, cAMP, hepatocyte nuclear factor alpha, and the coactivator peroxisome proliferatoractivated receptor gamma coactivator-1alpha. J. Biol. Chem. 281, 26540-26551.   DOI
62 Dong, B., Qatanani, M. and Moore, D. D. 2009. Constitutive androstane receptor mediates the induction of drug metabolism in mouse models of type 1 diabetes. Hepatology 50, 622-629.   DOI