Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.8.879

Insulin-like Growth Factor-I Modulates BDNF Expression by Inhibition of Histone Deacetylase in C2C12 Skeletal Muscle Cells  

Kim, Hye Jin (Department of Kinesiology and Sports Studies, College of Science and Industry Convergence, Ewha Womans University)
Lee, Won Jun (Department of Kinesiology and Sports Studies, College of Science and Industry Convergence, Ewha Womans University)
Publication Information
Journal of Life Science / v.27, no.8, 2017 , pp. 879-887 More about this Journal
Abstract
It is well established that brain-derived neurotrophic factor (BDNF) is expressed not only in the brain but also in skeletal muscle, and is required for normal neuromuscular system function. Histone deacetylases (HDACs) and insulin-like growth factor-I (IGF-I) are potent regulators of skeletal muscle myogenesis and muscle gene expression, but the mechanisms of HDAC and IGF-I in skeletal muscle-derived BDNF expression have not been examined. In this study, we examined the effect of IGF-I and suberoylanilide hydroxamic acid (SAHA), a pan-HDAC inhibitor, on BDNF induction. Proliferating or differentiating C2C12 skeletal muscle cells were treated with increasing concentrations (0-50 ng/ml) of IGF-I in the absence or presence of $5{\mu}M$ SAHA for various time periods (3-24 hr). Treatment of C2C12 cells with IGF-I resulted in a dose- and time-dependent decrease in BDNF mRNA expression. However, inhibition of HDAC led to a significant increase in the expression of BDNF mRNA levels. In addition, immunocytochemistry revealed high BDNF protein levels in undifferentiated C2C12 skeletal muscle cells, whether untreated, IGF-I-treated, or exposed to SAHA. These results represent the first evidence that IGF-I can suppress the mRNA and protein expression of BDNF; conversely, SAHA attenuates the effects of IGF-I. Consequently, SAHA upregulates BDNF expression in C2C12 skeletal muscle cells.
Keywords
Brain-derived neurotrophic factor; C2C12 skeletal muscle cell; histone deacetylase inhibitor; insulin-like growth factor-I; suberoylanilide hydroxamic acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chen, P. S., Peng, G. S., Li, G., Yang, S., Wu, X., Wang, C. C., Wilson, B., Lu, R. B., Gean, P. W., Chuang, D. M. and Hong, J. S. 2006. Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol. Psychiatry 11, 1116-1125.   DOI
2 Clemmons, D. R. 2009. Role of IGF-I in skeletal muscle mass maintenance. Trends Endocrinol. Metab. 20, 349-356.   DOI
3 Clow, C. and Jasmin, B. J. 2010. Brain-derived neurotrophic factor regulates satellite cell differentiation and skeletal muscle regeneration. Mol. Biol. Cell. 21, 2182-2190.   DOI
4 Cohen, T. J., Barrientos, T., Hartman, Z. C., Garvey, S. M., Cox, G. A. and Yao, T. P. 2009. The deacetylase HDAC4 controls myocyte enhancing factor-2-dependent structural gene expression in response to neural activity. FASEB. J. 23, 99-106.   DOI
5 Colombo, E., Bedogni, F., Lorenzetti, I., Landsberger, N., Previtali, S. C. and Farina, C. 2013. Autocrine and immune cell-derived BDNF in human skeletal muscle: implications for myogenesis and tissue regeneration. J. Pathol. 231, 190-198.   DOI
6 Cotman, C. W. and Berchtold, N. C. 2002. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25, 295-301.   DOI
7 Cotman, C. W., Berchtold, N. C. and Christie, L. A. 2007. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464-472.   DOI
8 Dey, B. R., Furlanetto, R. W. and Nissley, P. 2000. Suppressor of cytokine signaling (SOCS)-3 protein interacts with the insulin-like growth factor-I receptor. Biochem. Biophys. Res. Commun. 278, 38-43.   DOI
9 Fu, X., Zhao, J. X., Liang, J., Zhu, M. J., Foretz, M., Viollet, B. and Du, M. 2013. AMP-activated protein kinase mediates myogenin expression and myogenesis via histone deacetylase 5. Am. J. Physiol. 305, C887-895.   DOI
10 Galvin, C. D., Hardiman, O. and Nolan, C. M. 2003. IGF-I receptor mediates differentiation of primary cultures of mouse skeletal myoblasts. Mol. Cell. Endocrinol. 200, 19-29.   DOI
11 Glass, D. J. 2003. Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat. Cell. Biol. 5, 87-90.   DOI
12 McKinsey, T. A., Zhang, C. L. and Olson, E. N. 2001. Control of muscle development by dueling HATs and HDACs. Curr. Opin. Genet. Dev. 11, 497-504.   DOI
13 Griesbeck, O., Parsadanian, A. S., Sendtner, M. and Thoenen, H. 1995. Expression of neurotrophins in skeletal muscle: quantitative comparison and significance for motoneuron survival and maintenance of function. J. Neurosci. Res. 42, 21-33.   DOI
14 Iezzi, S., Cossu, G., Nervi, C., Sartorelli, V. and Puri, P. L. 2002. Stage-specific modulation of skeletal myogenesis by inhibitors of nuclear deacetylases. Proc. Natl. Acad. Sci. USA 99, 7757-7762.   DOI
15 Koppel, I. and Timmusk, T. 2013. Differential regulation of BDNF expression in cortical neurons by class-selective histone deacetylase inhibitors. Neuropharmacology 75, 106-115.   DOI
16 Mitsiades, C. S., Mitsiades, N. S., McMullan, C. J., Poulaki, V., Shringarpure, R., Hideshima, T., Akiyama, M., Chauhan, D., Munshi, N., Gu, X., Bailey, C., Joseph, M., Libermann, T. A., Richon, V. M., Marks, P. A. and Anderson, K. C. 2004. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc. Natl. Acad. Sci. USA 101, 540-545.   DOI
17 Miura, P., Amirouche, A., Clow, C., Belanger, G. and Jasmin, B. J. 2012. Brain-derived neurotrophic factor expression is repressed during myogenic differentiation by miR-206. J. Neurochem. 120, 230-238.   DOI
18 Ntanasis-Stathopoulos, J., Tzanninis, J. G., Philippou, A. and Koutsilieris, M. 2013. Epigenetic regulation on gene expression induced by physical exercise. J. Musculoskelet. Neuronal. Interact. 13, 133-146.
19 Mousavi, K. and Jasmin, B. J. 2006. BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation. J. Neurosci. 26, 5739-5749.   DOI
20 Mousavi, K., Parry, D. J. and Jasmin, B. J. 2004. BDNF rescues myosin heavy chain IIB muscle fibers after neonatal nerve injury. Am. J. Physiol. 287, C22-29.   DOI
21 Pandorf, C. E., Haddad, F., Wright, C., Bodell, P. W. and Baldwin, K. M. 2009. Differential epigenetic modifications of histones at the myosin heavy chain genes in fast and slow skeletal muscle fibers and in response to muscle unloading. Am. J. Physiol. 297, C6-16.   DOI
22 Park, H. and Poo, M. M. 2013. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 14, 7-23.   DOI
23 Pedersen, B. K. and Febbraio, M. A. 2008. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev. 88, 1379-1406.   DOI
24 Pedersen, B. K. 2009. Muscle as an endocrine organ: IL-6 and other myokines. J. Appl. Physiol. 107, 1006-1014.   DOI
25 Pedersen, B. K. and Febbraio, M. A. 2012. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 8, 457-465.   DOI
26 Sacheck, J. M., Ohtsuka, A., McLary, S. C. and Goldberg, A. L. 2004. IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am. J. Physiol. 287, E591-601.
27 Bharathy, N., Ling, B. M. and Taneja, R. 2013. Epigenetic regulation of skeletal muscle development and differentiation. Subcell. Biochem. 61, 139-150.
28 Wrann, C. D., White, J. P., Salogiannnis, J., Laznik-Bogoslavski, D., Wu, J., Ma, D., Lin, J. D., Greenberg, M. E. and Spiegelman, B. M. 2013. Exercise induces hippocampal BDNF through a PGC-$1{\alpha}$/FNDC5 pathway. Cell. Metab. 18, 649-659.   DOI
29 Adams, G. R. 2002. Autocrine/paracrine IGF-I and skeletal muscle adaptation. J. Appl. Physiol. 93, 1159-1167.   DOI
30 Anderson, B. C., Christiansen, S. P., Grandt, S., Grange, R. W. and McLoon, L. K. 2006. Increased extraocular muscle strength with direct injection of insulin-like growth factor-I. Invest. Ophthalmol. Vis. Sci. 47, 2461-2467.   DOI
31 Zwetsloot, K. A., Laye, M. J. and Booth, F. W. 2009. Novel epigenetic regulation of skeletal muscle myosin heavy chain genes. Focus on "Differential epigenetic modifications of histones at the myosin heavy chain genes in fast and slow skeletal muscle fibers and in response to muscle unloading". Am. J. Physiol. 297, C1-3.   DOI
32 Xu, B. 2013. BDNF (I)rising from exercise. Cell. Metab. 18, 612-614.   DOI