Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.9.999

Artemisia scoparia Inhibits Adipogenesis in 3T3-L1 Pre-adipocytes by Downregulating the MAPK Pathway  

Oh, Jung Hwan (Department of Food and Nutrition, College of Medical and Life Sciences, Silla University)
Karadeniz, Fatih (Department of Food and Nutrition, College of Medical and Life Sciences, Silla University)
Seo, Youngwan (Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University)
Kong, Chang-Suk (Department of Food and Nutrition, College of Medical and Life Sciences, Silla University)
Publication Information
Journal of Life Science / v.28, no.9, 2018 , pp. 999-1006 More about this Journal
Abstract
Obesity is epidemic worldwide and has reportedly been linked to the progression of several metabolic and cardiovascular diseases. The natural products are decreasing the side effects of medicines used for obesity and also have health benefits dut to their numerous bioactive compounds. In this context, Artemisia scoparia is a widespread plant that has been suggested as possessing various types of bioactivity. In this study, the crude extract from A. scoparia (ASE) was tested for its ability to suppress adipogenesis in mouse 3T3-L1 pre-adipocytes. The molecular pathway by which ASE affects differentiation of 3T3-L1 cells was also investigated. The introduction of ASE to differentiating 3T3-L1 pre-adipocytes resulted in suppressed adipogenesis, as confirmed by decreased intracellular lipid accumulation. The differentiating cells treated with 10 and $100{\mu}g/ml$ of ASE showed 21.9 and 29.0% less lipid accumulation, respectively, than untreated adipocytes. In addition, the results indicated that ASE treatment lowered the expression of the adipogenesis-related factors $PPAR{\gamma}$, $C/EBP{\alpha}$, and SREBP-1c. Furthermore, treating with ASE notably decreased levels of phosphorylated p38, ERK, and JNK in 3T3-L1 adipocytes. These results indicate that ASE exhibits significant anti-adipogenesis activity by downregulating the MAPK and $PPAR{\gamma}$ pathways during the differentiation of 3T3-L1 pre-adipocytes. Therefore, A. scoparia may be a potential source of natural products against obesity.
Keywords
Adipogenesis; Artemisia scoparia; MAPK; $PPAR{\gamma}$; 3T3-L1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Anderson, A. S. and Caswell, S. 2009. Obesity management - an opportunity for cancer prevention. Surgeon 7, 282-285.   DOI
2 Bost, F., Aouadi, M., Caron, L. and Binetruy, B. 2005. The role of MAPKs in adipocyte differentiation and obesity. Biochimie 87, 51-56.   DOI
3 Cha, J. D., Jeong, M. R., Jeong, S. I., Moon, S. E., Kim, J. Y., Kil, B. S. and Song, Y. H. 2005. Chemical composition and antimicrobial activity of the essential oils of Artemisia scoparia and A. capillaris. Planta Med. 71, 186-190.   DOI
4 Choi, J. H., Banks, A. S., Estall, J. L., Kajimura, S., Bostrom, P., Laznik, D., Ruas, J. L., Chalmers, M. J., Kamenecka, T. M., Bluher, M., Griffin, P. R. and Spiegelman, B. M. 2010. Obesity-linked phosphorylation of PPAR${\gamma}$ by cdk5 is a direct target of the anti-diabetic PPAR${\gamma}$ ligands. Nature 466, 451-456.   DOI
5 de Ferranti, S. and Mozaffarian, D. 2008. The perfect storm: Obesity, adipocyte dysfunction, and metabolic consequences. Clin. Chem. 54, 945-955.   DOI
6 Fajas, L., Fruchart, J. C. and Auwerx, J. 1998. Transcriptional control of adipogenesis. Curr. Opin. Cell Biol. 10, 165-173.   DOI
7 Habib, M. and Waheed, I. 2013. Evaluation of anti-nociceptive, anti-inflammatory and antipyretic activities of Artemisia scoparia hydromethanolic extract. J. Ethnopharmacol. 145, 18-24.   DOI
8 Kawada, T., Takahashi, N. and Fushiki, T. 2001. Biochemical and physiological characteristics of fat cell. J. Nutr. Sci. Vitaminol. 47, 1-12.   DOI
9 Hajer, G. R., van Haeften, T. W. and Visseren, F. L. J. 2008. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur. Heart J. 29, 2959-2971.   DOI
10 Hsu, C. L. and Yen, G. C. 2007. Effects of flavonoids and phenolic acids on the inhibition of adipogenesis in 3T3-L1 adipocytes. J. Agric. Food Chem. 55, 8404-8410.   DOI
11 Kim, J., Karadeniz, F., Ahn, B., Kwon, M. S., Mun, O., Bae, M. J., Seo, Y., Kim, M., Lee, S., Kim, Y. Y., Mi Soon, J. and Kong, C. 2016. Bioactive quinone derivatives from the marine brown alga Sargassum thunbergii induce anti-adipogenic and pro-osteoblastogenic activities. J. Sci. Food Agric. 96, 783-790.   DOI
12 Kim, T., Jo, C., Kim, H. S., Park, Y. M., Wu, Y. X., Cho, J. H. and Kim, T. H. 2016. Chemical constituents from Ainsliaea acerifolia as potential anti-obesity agents. Phytochem. Lett. 16, 146-151.   DOI
13 Kim, Y. and Lee, J. 2015. Esculetin, a coumarin derivative, suppresses adipogenesis through modulation of the AMPK pathway in 3T3-L1 adipocytes. J. Func. Foods 12, 509-515.   DOI
14 Mcpherron, A. and Lee, S. 2002. Suppression of body fat accumulation in myostatin-deficient mice. J. Clin. Investig. 109, 595-602.   DOI
15 Kim, J. A., Karadeniz, F., Ahn, B. N., Kwon, M. S., Mun, O. J., Kim, M., Lee. S. H., Yu, K. H., Kim, Y. Y. and Kong, C. S. 2014. Sargassum sp. attenuates oxidative stress and suppresses lipid accumulation in vitro. J. Life Sci. 24, 274-283.   DOI
16 Lavie, C. J., Milani, R. V. and Ventura, H. O. 2009. Obesity and cardiovascular disease: Risk factor, paradox, and impact of weight loss. J. Am. College Cardiol. 53, 1925-1932.   DOI
17 Lee, M. H., Chen, Y. Y., Tsai, J. W., Wang, S. C., Watanabe, T. and Tsai, Y. C. 2011. Inhibitory effect of ${\beta}$-asarone, a component of Acorus calamusessential oil, on inhibition of adipogenesis in 3T3-L1 cells. Food Chem. 126, 1-7.   DOI
18 Malnick, S. D. and Knobler, H. 2006. The medical complications of obesity. QJM. 99, 565-579.   DOI
19 Marti, A., Martinez-Gonzalez, M. A. and Martinez, J. A. 2008. Interaction between genes and lifestyle factors on obesity. Proc. Nutr. Soc. 67, 1-8.   DOI
20 Nam, S. Y., Han, N. R., Rah, S. Y., Seo, Y., Kim, H. M. and Jeong, H. J. 2017. Anti-inflammatory effects of Artemisia scoparia and its active constituent, 3,5-dicaffeoyl-epi-quinic acid against activated mast cells. Immunopharm. Immunotoxicol. 40, 52-58.
21 Nawrocki, A. R. and Scherer, P. E. 2005. Keynote review: the adipocyte as a drug discovery target. Drug Discov. Today 10, 1219-1230.   DOI
22 Negahban, M., Moharramipour, S. and Sefidkon, F. 2006. Chemical composition and insecticidal activity of Artemisia scoparia essential oil against three coleopteran stored-product insects. J. Asia-Pac. Entomol. 9, 381-388.   DOI
23 Ordovas, J. M. and Shen, J. 2008. Gene-environment interactions and susceptibility to metabolic syndrome and other chronic diseases. J. Periodontol. 79, 1508-1513.   DOI
24 Otto, T. C. and Lane, M. D. 2005. Adipose development: from stem cell to adipocyte. Crit. Rev. Biochem. Mol. Biol. 40, 229-242.   DOI
25 Park, J. H. 1999. Korean Folk Medicine pp. 68, Busan National University Publisher: Busan, Korea.
26 Pettinelli, P. and Videla, L. A. 2011. Up-regulation of PPAR-${\gamma}$ mRNA expression in the liver of obese patients: An additional reinforcing lipogenic mechanism to SREBP-1c induction. J. Clin. Endocrinol. Metab. 96, 1424-1430.   DOI
27 Sun, K., Kusminski, C. M. and Scherer, P. E. 2011. Adipose tissue remodeling and obesity. J. Clin. Investig. 121, 2094-2101.   DOI
28 Shin, E., Choi, M. K., Yoo, H. S., Lee, C. K., Hwang, B. Y. and Lee, M. K. 2010. Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells. Biol. Pharm. Bull. 33, 1610-1614.   DOI
29 Singh, H. P., Mittal, S., Kaur, S., Batish, D. R. and Kohli, R. K. 2009. Chemical composition and antioxidant activity of essential oil from residues of Artemisia scoparia. Food Chem. 114, 642-645.   DOI
30 Song, Y., Lee, S. J., Jang, S. H., Kim, T. H., Kim, H. D., Kim, S. W., Won, C. K. and Cho, J. H. 2017. Annual wormwood leaf inhibits the adipogenesis of 3T3-L1 and obesity in high-fat diet-induced obese rats. Nutrients 9, 554.   DOI
31 Wofford, M. R. and Hall, J. E. 2004. Pathophysiology and treatment of obesity hypertension. Curr. Pharm. Des. 10, 3621-3637.   DOI
32 Xie, T., Liang, J. Y., Liu, J., Wang, M., Wei, X. L. and Yang, C. H. 2004. Chemical study on Artemisia scoparia. J. China Pharm. Univ. 35, 401-403.
33 Yang, Y., Yang, X., Xu, B., Zeng, G., Tan, J., He, X., Hu, C. and Zhou, Y. 2014. Chemical constituents of Morus alba L. and their inhibitory effect on 3T3-L1 preadipocyte proliferation and differentiation. Fitoterapia 98, 222-227.   DOI