• Title/Summary/Keyword: 알칼리염소법

Search Result 11, Processing Time 0.034 seconds

도금폐수처리의 개선방법에 관한 연구

  • 이내우;최재욱;안병환;임이택;우창호
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.11a
    • /
    • pp.261-266
    • /
    • 1997
  • 가장 넓게 쓰이고 있는 알칼리염소법에 의한 도금폐수 처리법은 약 50년전에 Dodge와 Zabban에 의해 발표된 이론에 기초하고, 이것은 pH 및 ORP에 의존하는 반응으로 차아염소산이 시안화물을 시안산염으로 산화시키는 것이며, 알칼리조건하에서 염소화를 하는 동안에 시안화물이 파괴되고 중금속염은 침전을 생성한다. 이 반응은 1단계에서 시안산기가 바로 시안산나트륨으로 되는 것이 아니고 반응의 중간생성물인 염화시아노겐(CNCI)이라고 하는 독성물질이 생성되기 때문에 안전상의 문제가 있다. 또 알카리 염소법은 고농도일 경우에는 처리가 대단히 어렵고, 저농도일지라도 철, 니켈 및 구리와 같이 중금속성분이 다량 혼입되면 배출허용기준치이하로 처리하기는 사실상 불가능하다. (중략)

  • PDF

청정공정 설계에 의한 보급형 도금폐액 처리기술 개발

  • 김태경;오세화;이금용
    • Environmental engineer
    • /
    • s.179
    • /
    • pp.72-76
    • /
    • 2001
  • 본 연구의 목적은 기존 혼합도금폐수 처리공정의 문제점(현재 도금폐수처리시 사용되고 있는 알칼리 염소법은 작업장내의 기기 부식, 작업환경 열악, 배출수 내의 활성염소 잔류 및 폐수처리 공정의 적정화 미흡)을 해결하고 폐수처리 공정에서 유해 물질을 즉시 분석할 수 있는 정량제를 국산화하여 국내의 도금폐수 처리공장에 보급하는 것이다. 개발한 기술은 기존 도금폐수 처리공정에서 사용하고 있는 과다한 차아염소산소다 사용법을 대체한 기술로 처리공정의 적용법이 간단하

  • PDF

The Treatment of Heavy Metal-cyanide Complexes Wastewater by Zn$^{+2}$/Fe$^{+2}$ Ion and Coprecipitation in Practical Plant (II) (아연백법 및 공침공정을 이용한 복합 중금속-시안착염 폐수의 현장처리(II))

  • Lee, Jong-Cheul;Lee, Young-Man;Kang, Ik-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.524-533
    • /
    • 2008
  • Industrial wastewater generated in the electroplating and metal finishing industries typically contain toxic free and complex metal cyanide with various heavy metals. Alkaline chlorination, the normal treatment method destroys only free cyanide, not complex metal cyanide. A novel treatment method has been developed which destroys both free and complex metal cyanide as compared with Practical Plant(I). Prior to the removal of complex metal cyanide by Fe/Zn coprecipitation and removal of others(Cu, Ni), Chromium is reduced from the hexavalent to the trivalent form by Sodium bisulfite(NaHSO$_3$), followed by alkaline-chlorination for the cyanide destruction. The maximum removal efficiency of chromium by reduction was found to be 99.92% under pH 2.0, ORP 250 mV for 0.5 hours. The removal efficiency of complex metal cyanide was max. 98.24%(residual CN: 4.50 mg/L) in pH 9.5, 240 rpm with 3.0 $\times$ 10$^{-4}$ mol of FeSO$_4$/ZnCl$_2$ for 0.5 hours. The removal efficiency of Cu, Ni using both hydroxide and sulfide precipitation was found to be max. 99.9% as Cu in 3.0 mol of Na$_2$S and 93.86% as Ni in 4.0 mol of Na$_2$S under pH 9.0$\sim$10.0, 240 rpm for 0.5 hours. The concentration of residual CN by alkaline-chlorination was 0.21 mg/L(removal efficiencies: 95.33%) under the following conditions; 1st Oxidation : pH 10.0, ORP 350 mV, reaction time 0.5 hours, 2nd Oxidation : pH 8.0, ORP 650 mV, reaction time 0.5 hours. It is important to note that the removal of free and complex metal cyanide from the electroplating wastewater should be employed by chromium reduction, Fe/Zn coprecipitation and, sulfide precipitation, followed by alkaline-chlorination for the Korean permissible limit of wastewater discharge, where the better results could be found as compared to the preceding paper as indicated in practical treatment(I).

Application of Ferrate (VI) for Selective Removal of Cyanide from Plated Wastewater (도금폐수 중 시안(CN)의 선택적 제거를 위한 Ferrate (VI) 적용)

  • Yang, Seung-Hyun;Kim, Younghee
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.168-173
    • /
    • 2021
  • The treatment of plated wastewater is subject to various and complex processes depending on the pH, heavy metal, and cyanide content of the wastewater. Alkali chlorine treatment using NaOCl is commonly used for cyanide treatment. However, if ammonia and cyanide are present simultaneously, NaOCl is consumed excessively to treat ammonia. To solve this problem, this study investigated 1) the consumption of NaOCl according to ammonia concentration in the alkaline chlorine method and 2) whether ferrate (VI) could selectively treat the cyanide. Experiments using simulated wastewater showed that the higher the ammonia concentration, the lower the cyanide removal rate, and the linear increase in NaOCl consumption according to the ammonia concentration. Removal of cyanide using ferrate (VI) confirmed the removal of cyanide regardless of ammonia concentration. Moreover, the removal rate of ammonia was low, so it was confirmed that the ferrate (VI) selectively eliminated the cyanide. The cyanide removal efficiency of ferrate (VI) was higher with lower pH and showed more than 99% regardless of the ferrate (VI) injection amount. The actual application to plated wastewater showed a high removal ratio of over 99% when the input mole ratio of ferrate (VI) and cyanide was 1:1, consistent with the molarity of the stoichiometry reaction method, which selectively removes cyanide from actual wastewater containing ammonia and other pollutants like the result of simulated wastewater.

Chlor-alkali Membrane Process and its Prospects (클로알칼리 멤브레인법과 전망)

  • Park, In Kee;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.203-215
    • /
    • 2015
  • Chlor-alkali (CA) membrane process is based on salined water electrolysis employing cation condutive polymer electrolytes, which has been used for the conventional production of both sodium hydroxide and chlorine gas. The CA membrane process has advantages such as relatively low environmental impacts and fairly reduced energy consumption, when compared with diaphragm and mercury process. In this review articles, basic concepts, fundamental characteristics, key technologies of CA membrane process are dealt with in detail. In addition, advanced technologies associated with CA membrane process are described. They include zerogap and oxygen depolarized cathode technologies to improve energy efficiency during the electrolysis. Carbon dioxide mineralization technology will also be introduced as an example of hybridization with different technologies. Finally, current market trend in CA membrane process will be presented.

Stability Evaluation on Measuring Water-soluble Chloride Anions from Iron Artifacts (철제유물의 수용성 염소이온 측정방법에 대한 안정성 평가)

  • Lee, Jae-Sung;Park, Hyung-Ho;Yu, Jae-Eun
    • Journal of Conservation Science
    • /
    • v.26 no.4
    • /
    • pp.397-406
    • /
    • 2010
  • The most ideal method to measure the water-soluble $Cl^-$ ion eluted from iron artifacts is conducting the analysis on desalting solution by Ion Chromatography. But most institutes related to cultural heritages use Cl meter by reason of lack of budget and experts. This study evaluated reliability and stability between Cl meter and Ion Chromatography by doing cross-validation with results from two methods to detect $Cl^-$ ion of desalting solution. From D.I water, extremely small quantities of $Cl^-$ ion was detected by the influence of remaining water-soluble $Cl^-$ ion at the electrode of Cl meter and water-soluble $Cl^-$ which remains in Sodium sesquicarbonate, components of reagent was detected as well. The first desalting solution had the most $Cl^-$ ions, $Cl^-$ ion slightly decreased from the second to the fourth desalting solution and tend to decrease again at the stage of dealkalified in D.I water. Each Cl meter has the standard deviation according to the measured numbers and the higher concentration of $Cl^-$ ion the desalting solution has, the wider the deviation is. But when the concentration of $Cl^-$ ion is low, it was stable to use Cl meter to detect the concentration of $Cl^-$ ion from iron artifacts because there is the small deviation, It is thought that conductivity meter method is not suitable for measuring $Cl^-$ ion, because the electrical conductivity of alkaline solution is too high to measure $Cl^-$ ion.

A Study on the RuO2 Electrode Catalyst Prepared by Colloidal Method (콜로이드법으로 합성한 RuO2 전극촉매의 연구)

  • PARK, JIN-NAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.193-200
    • /
    • 2019
  • $RuO_2$, $PtO_2$, and various $(Ru,Pt)O_2$ colloidal solution were prepared using modified Watanabe method. Electrodes were manufactured by dipping of Ni mesh into the colloidal solution. Manufactured electrodes were characterized by XRD, SEM, and EDS. $(Ru,Pt)O_2$ electrodes showed $RuO_2$ crystal structure and high roughness. The hydrogen evolution reaction (HER) activities were evaluated by Linear Sweep Voltammetry. 1Ru2Pt electrode showed similar activity with commercial electrode, HER potentials are -0.9 V for both.

Studies on the Pulping Characteristics of Larchwood (Larix leptolepis Gordon) by Alkaline Process with Additives (첨가제(添加劑) 알칼리 법(法)에 의한 일본 잎갈 나무의 펄프화(化) 특성(特性)에 관(關)한 연구(硏究))

  • Lim, Kie-Pyo;Shin, Dong-Sho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.3-30
    • /
    • 1979
  • Larch ($\underline{Larix}$ $\underline{leptolepis}$ GORDON), one of the major afforestation species in Korea in view of its growing stock and rate of growth, is not favored as a raw material for pulp due to its low yield of pulp and difficulties with bleaching arising from the high content of extractives in wood, and the high heartwood ratio and the active phenolics, respectively. The purpose of this study is to investigate the characteristics of firstly pulping with various additives of cellulose protector for the yield of pulp, and secondly bleaching with oxygen for chlotination-alkali extraction of five stage-sequence to reduce chlorine compounds in bleaching effluents. The kraft cooking liquor for five age groups of larchwood was 18 percent active alkali with 25 percent sulfidity and 5 : 1 liquor-to-wood ratio, and each soda liquor for sap-and heart-wood of the 15-year-old larchwood was 18 percent alkali having one of the following cellulose protectors as the additive; magnesium sulfate ($MgSO_4$, 2.5%), zinc sulfate ($ZnSO_4$, 2.5%), aluminium sulfate ($Al_2(SO_4)_3$, 2.5%), potasium iodide (KI, 2.5%), hydroquinone (HQ, 2.5%), anthraquinone (AQ, 0.1%) and ethylene diamine (EDA, 2.5%). Then each anthraquinone-soda liquor for the determination of suitable cooking condition was the active alkali level of 15, 17 and 19 percent with 1.0, 0.5 and 0.1 percent anthraquinone, respectively. The cooking procedure for the pulps was scheduled to heat to 170$^{\circ}C$ in 90 minutes and to cook 90 minutes at the maximum temperature. The anthraquinone-soda pulps from both heartwood and sapwood of 15-year-old larchwood prepared with 0.5 percent anthraquinone and 18 percent active alkali were bleached in a four-stage sequency of OCED. (O: oxygen bleaching, D: chlorine dioxide bleaching and E: alkali extraction). In the first stage oxygen in atmospheric pressure was applied to a 30 percent consistency of pulp with 0.1 percent magnesium oxide (MgO) and 3, 6, and 9 percent sodium hydroxide on oven dry base, and the bleached results were compared pulps bleached under the conventional CEDED (C: chlorination). The results in the study were summarized as follows: 1. The screened yield of larch kraft pulp did not differ from particular ages to age group, but heartwood ratio, basic density, fiber length and water-extractives contents of wood and the tear factor of the pulp increased with increasing the tree age. The total yield of the pulp decreased. 2. The yield of soda pulp with various chemicals for cellulose protection of the 15-year-old larchwood increased slightly more than that of pure soda pulp and was slightly lower than that of kraft pulp. The influence of cellulose protectors was similar to the yield of pulps from both sapwood and heartwood. The effective protectors among seven additives were KI, $MgSO_4$ and AQ, for which the yields of screened pulp was as high as that of kraft pulp. Considering the additive level of protector, the AQ was the most effective in improving the yield and the quality of pulp. 3. When the amount of AQ increased in soda cooking, the yield and the quality of the pulp increased but rejects in total yield increased with decreasing the amount of active alkali from 19 to 15 percent. The best proportion of the AQ seemed to be 0.5 percent at 17 percent active alkali in anthraquinone-soda pulping. 4. On the bleaching of the AQ-soda pulp at 30 percent consistency with oxygen of atomospheric pressure in the first stage of the ODED sequence, the more caustic soda added, the brighter bleached pulp was obtained, but more lignin-selective bleaching reagent in proportion to the oxygen was necessary to maintain the increased yield with the addition of anthraquinone. 5. In conclusion, the suitable pulping condition for larchwood to improve the yield and quality of the chemical pulp to the level for kraft pulp from conventional process seemed to be. A) the selection of young larchwood to prevent decreasing in yield and quality due to the accumulation extractives in old wood, B) the application of 0.5 percent anthraquinone to the conventional soda cooking of 18 percent active alkali, and followed, C) the bleaching of oxygen in atmospheric pressure on high consistency (30%) with 0.1 percent magnesium oxide in the first stage of the ODED sequence to reduce the content of chlorine compounds in effluent.

  • PDF

High Temperature Corrosion Effect of Superheater Materials by Alkali Chlorides (염화알칼리에 의한 과열기 소재의 고온부식 영향)

  • Kim, Beomjong;Jeong, Soohwa;Kim, Hyesoo;Ryu, Changkook;Lee, Uendo
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.339-347
    • /
    • 2018
  • In order to cope with environmental problems and climate change caused by fossil fuels, renewable energy supply is increasing year by year. Currently, waste energy accounts for 60% of renewable energy production. However, waste has a lower calorific value than fossil fuels and contains various harmful substances, which causes serious problems when applied to power generation boilers. In particular, the chlorine in the waste fuel increases slagging and fouling of boiler heat exchangers, leading to a reduction in thermal efficiency and the main cause of high temperature corrosion, lowering facility operation rate and increasing operating cost. In this study, the high temperature corrosion experiments of superheater materials (ASME SA213/ASTM A213 T2, T12 and T22 alloy steel) by alkali chlorides were conducted, and their corrosion characteristics were analyzed by the weight loss method and SEM-EDS. Experiments show that the higher the temperature and chloride content, the more corrosion occurs, and KCl further corrodes the materials compared to NaCl under the same condition. In addition, the higher the chromium content of the material, the better the corrosion resistance to the alkali chlorides.

Separation and Recovery of Ce, Nd and V from Spent FCC Catalyst (FCC 폐촉매로부터 Ce, Nd 및 V의 분리 회수 프로세스)

  • Jeon, Sung Kyun;Yang, Jong Gyu;Kim, Jong Hwa;Lee, Sung Sik
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.679-684
    • /
    • 1997
  • The major constituents in spent FCC catalysts are Si, Al, Fe, Ti, alkali metals and some others. The spent catalyst is also composed small amounts of rare metals such as Ce, Nd, Ni and V. The selective adsorption and concentration of Ce and Nd from the leaching solution of spent FCC catalysts with sulfuric acid($0.25mol/dm^3$) were carried out by the column method with a chelate resin having a functional group of aminophosphoric acid type. Ce and Nd were separated from eluate liquor containing Al, Nd and V by the precipitation process with oxalic acid. Vanadium is purified from chloride ion coexistance by solvent extraction, employing tri-n-octyl phosphine oxide as extractant with Al in the raffinate solution. Rare metals with the purity of 99 percent were obtained from the spent FCC catalyst.

  • PDF