DOI QR코드

DOI QR Code

Application of Ferrate (VI) for Selective Removal of Cyanide from Plated Wastewater

도금폐수 중 시안(CN)의 선택적 제거를 위한 Ferrate (VI) 적용

  • Yang, Seung-Hyun (Department of convergence engineering, Graduate school of Venture, Hoseo University) ;
  • Kim, Younghee (Department of convergence engineering, Graduate school of Venture, Hoseo University)
  • 양승현 (호서대학교 벤처대학원 융합공학과) ;
  • 김영희 (호서대학교 벤처대학원 융합공학과)
  • Received : 2021.05.10
  • Accepted : 2021.06.07
  • Published : 2021.06.30

Abstract

The treatment of plated wastewater is subject to various and complex processes depending on the pH, heavy metal, and cyanide content of the wastewater. Alkali chlorine treatment using NaOCl is commonly used for cyanide treatment. However, if ammonia and cyanide are present simultaneously, NaOCl is consumed excessively to treat ammonia. To solve this problem, this study investigated 1) the consumption of NaOCl according to ammonia concentration in the alkaline chlorine method and 2) whether ferrate (VI) could selectively treat the cyanide. Experiments using simulated wastewater showed that the higher the ammonia concentration, the lower the cyanide removal rate, and the linear increase in NaOCl consumption according to the ammonia concentration. Removal of cyanide using ferrate (VI) confirmed the removal of cyanide regardless of ammonia concentration. Moreover, the removal rate of ammonia was low, so it was confirmed that the ferrate (VI) selectively eliminated the cyanide. The cyanide removal efficiency of ferrate (VI) was higher with lower pH and showed more than 99% regardless of the ferrate (VI) injection amount. The actual application to plated wastewater showed a high removal ratio of over 99% when the input mole ratio of ferrate (VI) and cyanide was 1:1, consistent with the molarity of the stoichiometry reaction method, which selectively removes cyanide from actual wastewater containing ammonia and other pollutants like the result of simulated wastewater.

도금폐수의 처리는 폐수의 pH, 중금속 및 시안(CN)함유에 따라 다양하고 복잡한 공정이 적용된다. 이중 시안(CN)의 처리는 차아염소산(NaOCl)을 이용한 알칼리 염소 처리법이 일반적으로 많이 사용되고 있다. 그러나, 암모니아성 질소(NH3-N)와 시안(CN)이 동시에 함유될 경우 암모니아성 질소(NH3-N)의 처리를 위해 차아염소산(NaOCl) 이 과다하게 소비되는 문제가 있다. 이러한 문제를 해결하기 위하여 본 연구는 시안(CN)처리에 있어서 1) 알칼리염소법에서 암모니아성 질소(NH3-N)농도에 따른 차아염소산(NaOCl)의 소모량을 조사하고 2) ferrate (VI)가 시안(CN)을 선택적으로 처리할 수 있는지를 평가하였다. 모의폐수를 이용한 실험결과 알칼리염소법에서는 암모니아성 질소(NH3-N)농도가 높을수록 시안(CN)의 제거율이 감소하였으며 차아염소산(NaOCl)의 소비량이 암모니아성 질소(NH3-N) 농도에 따라 선형적으로 증가하였다. Ferrate (VI)를 이용한 시안(CN) 제거에서는 암모니아성 질소(NH3-N) 농도에 관계없이 시안(CN)의 제거를 확인하였으며 이때 암모니아성 질소(NH3-N)의 제거율은 낮아 ferrate (VI)가 시안(CN)을 선택적으로 제거함을 확인하였다. Ferrate (VI)의 시안(CN) 제거효율은 pH가 낮을수록 높게 나타났고 ferrate (VI) 주입량에 관계없이 99% 이상을 보였다. 실제 도금폐수에 적용한 결과에서는 ferrate (VI)와 시안(CN)의 투입 몰비 1:1에서 99% 이상의 높은 제거율을 보였으며 이는 화학양론 반응식의 몰비와 일치하는 결과로 모의 폐수와 동일하게 암모니아성 질소(NH3-N) 및 기타오염물질이 함유된 실제 폐수에서도 선택적으로 시안(CN)을 제거하는 것으로 확인되었다.

Keywords

Acknowledgement

본 연구는 한국환경산업기술원의 "중소환경기업 상용화 지원사업"의 지원으로 이루어졌으며 지원에 감사드립니다.

References

  1. Chung, H. J., "A Study on the Removal of Cyanide and Heavy Metals in Plating Wastewater," KSWST J. Water Treatment 21(2), 45-57 (2013).
  2. Kim, T., Kim, T. K., and Zoh, K. D., "Removal Mechanism of Heavy Metal (Cu, Ni, Zn, and Cr) in the Presence of Cyanide During Electrocoagulation Using Fe and Al Electrodes," J. Water Process Eng., 33, 101109 (2020). https://doi.org/10.1016/j.jwpe.2019.101109
  3. Yang, Y., Nian, F., Xu, D., Sun, Y., Hwang, J. Y., Qiao, P., and Xi, L., "Oxidation of Cyanide and Simultaneous Copper Electrodeposition from Electroplating Wastewater in an Electrochemical Reactor," Materials Engineering-From Ideas to Practice : An EPD Symposium in Honor of Jiann-Yang Hwang, 249-256 (2021).
  4. Kim, T. K., Kim, T., Jo, A., Park, S., Choi, K., and Zoh, K. D., "Degradation Mechanism of Cyanide in Water Using a UV-LED/H2O2/Cu2+ System," Chemosphere, 208, 441-449 (2018). https://doi.org/10.1016/j.chemosphere.2018.05.198
  5. Perez-Cid, B., Calvar, S., Moldes, A. B., and Manuel Cruz, J., "Effective Removal of Cyanide and Heavy Metals from an Industrial Electroplating Stream Using Calcium Alginate Hydrogels," Molecules, 25(21), 5183-5198 (2020). https://doi.org/10.3390/molecules25215183
  6. Kim, T. K., Kim, T., Choe, W. S., Kim, M. K., Jung, Y. J., and Zoh, K. D., "Removal of Heavy Metals in Electroplating Wastewater by Powdered Activated Carbon (PAC) and Sodium Diethyldithiocarbamate-modified PAC," Environ. Eng. Res, 23(3), 301-308 (2018). https://doi.org/10.4491/eer.2017.208
  7. Zhao, X., Jang, M., Cho, J. W., and Lee, J. W., "Operational Conditions of Electrochemical Oxidation Process for Removal of Cyanide (CN-) in Real Plating Wastewater," Membrane water treatment, 11(3), 217-222 (2020). https://doi.org/10.12989/mwt.2020.11.3.217
  8. Kim, N. C., and Song, J. H., "Removal of CN- and NH3 from wastewater using Electrochemical Oxidation Method (I) - Laboratory Scale Study -," J. Korean Soc. Environ. Anal., 13(4), 204-208 (2010).
  9. Zhu, M., Huang, H., Yuan, B., Zhou, Z., and Liu, S., "Removal of Cyanide and Heavy Metals in Electroplating Wastewater by Sodium Ferrate," Chinese J. Environ. Eng., 11(3), 1540-1544 (2017).
  10. Klis, S., Barbusinski, K., Thomas, M., and Mochnacka, A., "Application of potassium ferrate (VI) for oxidation of selected pollutants in aquatic environment - short review," Arch. Civ. Eng. Environ., 12, 129-137 (2019). https://doi.org/10.21307/acee-2019-012
  11. Sharma, V. K., Yngard, R. A., Cabelli, D. E., and Baum, J. C., "Ferrate (VI) and Ferrate (V) Oxidation of Cyanide, Thiocyanate, and Copper (I) Cyanide," Radiat. Phys. Chem., 77(6) 761-767 (2008). https://doi.org/10.1016/j.radphyschem.2007.11.004
  12. Terryn III, R. J., Huerta-Aguilar, C. A., Baum, J. C., and Sharma, V. K., "FeVI, FeV, and FeIV Oxidation of Cyanide: Elucidating the Mechanism Using Density Functional Theory Calculations," Chem. Eng. J., 330 1272-1278 (2017). https://doi.org/10.1016/j.cej.2017.08.080
  13. Zeng, F., Chen, C., and Huang, X., "Enhanced Electro-Generated Ferrate Using Fe(0)-plated Carbon Sheet as an Anode and its Online Utilization for Removal of Cyanide," Chemosphere, 241, 125124 (2020) https://doi.org/10.1016/j.chemosphere.2019.125124
  14. Sharma V. K., "Potassium ferrate (VI) : an environmentally friendly oxidant," Adv. Environ. Res., 6(2), 143-156 (2002). https://doi.org/10.1016/S1093-0191(01)00119-8
  15. Licht, S., and Yu, X., "Electrochemical Alkaline Fe (VI) Water Purification and Remediation," Environ. Sci. Technol., 39(20), 8071-8076 (2005). https://doi.org/10.1021/es051084k
  16. Jung, S. Y., "A Study on the Decomposition Characteristics of Cyclic Compounds Using Liquid Ferrate (VI)," Master's thesis of the Department of Global Environmental Systems at Pukyong University, (2018).
  17. Sharma, V. K., Rivera, W., Smith, J. O., and O'Brien, B., "Ferrate (VI) Oxidation of Aqueous Cyanide," Environ. Sci. Technol., 32(17), 2608-2613 (1998). https://doi.org/10.1021/es970820k
  18. https://en.wikipedia.org/wiki/Pourbaix_diagram
  19. Costarramone, N., Kneip, A., and Castetbon, A., "Ferrate (VI) Oxidation of Cyanide in Water," Environ. Technol., 25(8), 945-955 (2004). https://doi.org/10.1080/09593330.2004.9619388
  20. Lee, Y., Um, I. H., and Yoon, J., "Arsenic (III) Oxidation by Iron (VI) (Ferrate) and Subsequent Removal of Arsenic (V) by Iron (III) Coagulation," Environ. Sci. Technol., 37(24), 5750-5756 (2003). https://doi.org/10.1021/es034203+
  21. Sharma, V. K., Bloom, J. T., and Joshi, V. N., "Oxidation of ammonia by ferrate (VI)," J. Environ. Sci. & Health Part A, 33(4), 635-650 (1998). https://doi.org/10.1080/10934529809376752