Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.3.203

Chlor-alkali Membrane Process and its Prospects  

Park, In Kee (Department of Energy Engineering, Dankook University)
Lee, Chang Hyun (Department of Energy Engineering, Dankook University)
Publication Information
Membrane Journal / v.25, no.3, 2015 , pp. 203-215 More about this Journal
Abstract
Chlor-alkali (CA) membrane process is based on salined water electrolysis employing cation condutive polymer electrolytes, which has been used for the conventional production of both sodium hydroxide and chlorine gas. The CA membrane process has advantages such as relatively low environmental impacts and fairly reduced energy consumption, when compared with diaphragm and mercury process. In this review articles, basic concepts, fundamental characteristics, key technologies of CA membrane process are dealt with in detail. In addition, advanced technologies associated with CA membrane process are described. They include zerogap and oxygen depolarized cathode technologies to improve energy efficiency during the electrolysis. Carbon dioxide mineralization technology will also be introduced as an example of hybridization with different technologies. Finally, current market trend in CA membrane process will be presented.
Keywords
Chor-alkali technology; Membrane process; Zerogap; Oxygen depolarized cathode; Carbon mineralization;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 P. W. Harben, "The industrial minerals handybook: a guide to markets, specifications, & prices", pp. 25-30, Metal Bulletin PLC (1999).
2 K. Greenwood and M. Pearce, "The removal of carbon dioxide from atmospheric air by scrubbing with caustic soda in packed towers", Trans. Inst. Chem. Engrs., 31, 201 (1953).
3 K. M. Porter and K. C. Varshney, "Interfacial areas and liquid-film mass transfer co-efficients of a 3 ft diameter bubble cap plate derived from absorption rates of $CO_{2}$ into water and caustic soda solution", Trans. Inst. Chem. Engrs., 44, 274 (1966).
4 S. Hazen, F. Hsu, D. Mueller, J. Crowley, and J. Heinecke, "Human neutrophils employ chlorine gas as an oxidant during phagocytosis", J. Clin. Invest., 98, 1283 (1996).   DOI
5 http://hcc.hanwha.com/business/bus_hwaseong.jsp.
6 http://www.cmaiglobal.com/marketing/samples/cmr_ summary.pdf.
7 B. K. Lahl, U. Duszeln, J. V. Gabel, and B. Stachel, "Distribution and balance of volatile halogenated hydrocarbons in the water and air of covered swimming pools using chlorine for water disinfection", Water Res., 15, 803 (1981).   DOI
8 S. Kelly and W. W. Sanderson, "The effect of chlorine in water on enteric viruses", Am. J. Public Health., 48, 1323 (1958).   DOI
9 J. R. Caldwell and J. W. Jackson, "High modulus polyester and polycarbonate compositions", US Patent 3,625,877, January 1 (1968).
10 A. Reinstaller, "Policy entrepreneurship in the co-evolution of institutions, preferences, and technology: comparing the diffusion of totally chlorine free pulp bleaching technologies in the US and sweden", Res. Policy., 34, 1366 (2005).   DOI
11 D. S. Varma and A. J. Kondapalli, "A comparative study of the thermal behavior of PVC, a series of synthesized chlorinated polyethylenes and HDPE", Polym. Degrad. Stab., 63, 1 (1999).   DOI
12 C. S. Macedo, R. A. Frederique, R. T. Andre, P. A. Melquizedeque, B. Z. Luiz, F. R. Joel, and C. S. Paulo, "New heterogeneous metal-oxides based catalyst for vegetable oil trans-esterification", J. Braz. Chem. Soc., 17, 1291 (2006).
13 J. Moorhouse, "Modern chlor-alkali technology", PP. 45-90, John Wiley & Sons, New York, NY (2008).
14 T. F. O'Brien, T. V. Bommaraju, and F. Hine, "Handbook of chlor-alkali technology: volume i: fundamentals", pp. 18-27, Springer Science & Business Media (2007).
15 http://www.eurochlor.org/media/10663/sustainable_ development_progress_report_august_2007.pdf.
16 http://www.eurochlor.org/media/9385/3-2-the_european_ chlor-alkali_industry_-_an_electricity_intensive_ sector_exposed_to_carbon_leakage.pdf.
17 M. Seko, "The ion-exchange membrane, chlor-alkali process", Ind. Eng. Chem. Prod. Res. Dev., 15, 286 (1976).   DOI
18 M. S. Landis, K. J. Gerald, A. W. Khalid, and I. S. Robert, "Divalent inorganic reactive gaseous mercury emissions from a mercury cell chlor-alkali plant and its impact on near-field atmospheric dry deposition", Atmos. Environ., 38, 613 (2004).   DOI
19 M. Lodenius and T. Esa, "Environmental mercury contamination around a chlor-alkali plant", Bull. Environ. Contam. Toxicol., 32, 439 (1984).   DOI
20 D. Bergner, "Membrane cells for chlor-alkali electrolysis", J. Appl. Electrochem., 12, 631 (1982).   DOI
21 M. Sugiyama, K. Saiki, A. Sakata, H. Aikawa, and N. Furuya, "Accelerated degradation testing of gas diffusion electrodes for the chlor-alkali process", J. Appl. Electrochem., 33, 929 (2003).   DOI
22 http://www.sensorprod.com/news/white-papers/aca/wp_ aca.pdf.
23 S. E. Kang and C. H. Lee, "Perfluorinated sulfonic acid ionomer-PTFE pore-filling membranes for polymer electrolyte membrane fuel cells", J. Membr., 25, 171 (2015).   DOI
24 A. Eisenberg and H. L. Yeager, "Perfluorinated ionomer membranes", J. Am. Chem. Soc., 180, 30 (1982).
25 H. Y. Lee, H. Hwang, S. Park, S. Choi, and Y. G. Shul, "Nafion impregnated electrospun polyethersulfone membrane for PEMFC", J. Membr., 20, 40 (2010).
26 http://www.kosen21.org/work/03_information/0302_ gtbReports/board_kosencollect_detailview.jsp?bid= 761699.
27 G. Faita and F. Federico, "Electrolysis cell with gas diffusion electrode", US Patent 7,670,472, March 2 (2010).
28 D. Kim and S. Y. Nam, "Research trend of organic/ inorganic composite membrane for polymer electrolyte membrane fuel cell", J. Membr., 22, 155 (2012).
29 P. Hayfield, "Development of the noble metal/ oxide coated titanium electrode", Platinum Met. Rev., 42, 46 (1998).
30 F. Hine, M. Yasuda, and T. Yoshida, "Studies on the oxide‐coated metal anodes for chlor‐alkali cells", J. Electrochem. Soc., 124, 500 (1977).   DOI
31 S. Trasatti, "Electrocatalysis: understanding the success of DSA(R)", Electrochim. Acta., 45, 2377 (2000).   DOI
32 Y. Takasu, W. Sugimoto, Y. Nishiki, and S. Nakamatsu, "Structural analyses of RuO2-TiO2/Ti and IrO2-RuO2-TiO2/Ti anodes used in industrial chlor-alkali membrane processes", J. Appl. Electrochem., 40, 1789 (2010).   DOI
33 Z. X. Zhang and J. H. Zhang, "Study on electrochemical performance of the titanium electrode coated with $IrO_{2}$.$Ti_{2}O_{5}$", J. Guangdong Non ferr. Met., 2, 3 (2004).
34 S. Fiameni, I. Herraiz-Cardona, M. Musiani, V. Perez-Herranz, L. Vazquez-Gómez, and E. Verlato, "The HER in alkaline media on Pt-modified three-dimensional Ni cathodes", Int. J. Hydrogen Energy., 37, 10507 (2012).   DOI
35 J. Jorne and J. F. Louvar, "Gas‐diverting electrodes in the chlor‐alkali membrane cell", J. Electrochem. Soc., 127, 298 (1980).   DOI
36 A. Bulan, R. Weber, and M. Weis, "Process for producing transport-and storage-stable oxygen-consuming electrodes", US Patent 251,328, November 3 (2011).
37 R. J. Gilliam, B. K. Boggs, V. Decker, M. A. Kostowskyj, S. Gorer, T. A. Albrecht, J. D. Way, D. W. Kirk, and A. J. Bard, "Low voltage electrochemical process for direct carbon dioxide sequestration", J. Electrochem. Soc., 159, 627 (2012).   DOI
38 C. W. Walton and R. E. White, "Utility of an empirical method of modeling combined zero gap/attached electrode membrane chlor‐alkali cells", J. Electrochem. Soc., 134, 565 (1987).   DOI
39 L. Lipp, S. Gottesfeld, and J. Chlistunoff, "Peroxide formation in a zero-gap chlor-alkali cell with an oxygen-depolarized cathode", J. Appl. Electrochem., 35, 1015 (2005).   DOI
40 D. Morris, "Energy analysis and cumulative energy consumption of complex chemical process", Chem. Eng. Sci., 40, 459 (2009).
41 I. Moussallem, J. Jorissen, U. Kunz, S. Pinnow, and T. Turek, "Chlor-alkali electrolysis with oxygen depolarized cathodes: history, present status and future prospects", J. Appl. Electrochem., 38, 1177 (2008).   DOI
42 H. Burney, "Membrane chlor-alkali process", PP. 393-394, Springer, New York, NY (1993).
43 E. Joudaki, F. Farzami, V. Mahdavi, and S. J. Hashemi, "Performance evaluation of oxygen‐depolarized cathode with PtPd/C electrocatalyst layer in advanced chlor‐alkali cell", Chem. Eng. Technol., 33, 1525 (2010).   DOI
44 J. Petersen, J. Baurmeister, O. Uensal, F. Jordt, and J. Kiefer, "For polymer electrolyte membranes (PEM) fuel cell", US Patent 7,834,131, February 16 (2007).
45 M. Hosseini and P. Zardari, "Electrocatalytical study of carbon supported Pt, Ru and bimetallic Pt-Ru nanoparticles for oxygen reduction reaction in alkaline media", Appl. Surf. Sci., 345, 223 (2015).   DOI
46 R. E. Hester and R. M. Harrison, "Issues in environmental science and technology-carbon capture sequestration and storage", pp. 100-125, RSC Publishing, Cambridge, UK (2010).
47 http://www.mcilvainecompany.com/Decision_Tree/subscriber/Tree/DescriptionTextLinks/April%202,%202009%20Hot%20Topic%20Hour/David%20St.%20A ngelo%20-%20Skyonic%204-2.pdf.
48 A. J. Hunt, E. H. Sin, R. Marriott, and J. H. Clark, "Generation, capture, and utilization of industrial carbon dioxide", Chem. Sus. Chem., 3, 306 (2010).   DOI
49 P. Luckow, M. A. Wise, J. J. Dooley, and S. H. Kim, "Large-scale utilization of biomass energy and carbon dioxide capture and storage in the transport and electricity sectors under stringent $CO_{2}$ concentration limit scenarios", Int. J. Greenhouse Gas Control., 4, 865 (2010).   DOI
50 http://www.prnewswire.com/news-releases/global-chloralkali- caustic-sodasodium-hydroxide-chlorine-sodaashsodium- carbonate-market---industry-trends--forecaststo- 2019-300029819.html.
51 N. Chavan, S. Pinnow, G. D. Polcyn, and T. Turek, "Non-isothermal model for an industrial chlor-alkali cell with oxygen-depolarized cathode", J. Appl. Electrochem., 1, 1 (2015).
52 http://www.chemlocus.co.kr/news/pdfView/1223.
53 S. K. Sugiyama. M. A. Sakata, and A. H. Furuya. "Accelerated degradation testing of gas diffusion electrodes for the chlor-alkali process", J. Appl. Electrochem., 33, 929 (2003).   DOI