• Title/Summary/Keyword: 알지네이트

Search Result 71, Processing Time 0.024 seconds

Preparation and Release Characterization of Sodium Alginate Bead Containing Phytoncide Oil (편백정유를 함유한 알지네이트 비드의 제조 및 방출 특성)

  • Yoon, Doo-Soo;Lee, Eung-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.557-562
    • /
    • 2018
  • High molecular weight sodium alginate (HMWSA)/low molecular weight sodium alginate (LMWSA) microcapsules containing phytoncide oil were prepared with different LMWSA contents. The effects of the stirring rate and ratio of HMWSA/LMWSA on the diameter and morphology of the phytoncide/alginate beads were investigated by optical microscopy and the release behaviors of phytoncide oil from the phytoncide/alginate beads were characterized by UV/Vis. spectrophotometry. The mean particle size of the phytoncide/alginate beads decreased with increasing stirring rate and concentration of the calcium chloride solution. The surface morphology of the phytoncide/alginate beads changed from smooth surfaces to skin-like rough surfaces with increasing LMWSA content. These results were due mainly to the increased hydrophilic groups at the bead surface, resulting in an increase in the release rate of phytoncide oil in the phytoncide/alginate beads.

Correct methods for using alginate Impression materials (알지네이트 인상재의 정확한 사용법)

  • Kim, U-Hyeon;Kim, Gyeong-Nam
    • The Journal of the Korean dental association
    • /
    • v.43 no.9 s.436
    • /
    • pp.576-581
    • /
    • 2005
  • 오늘날 알지네이트 인상재는 다른 어떠한 인상재보다 널리 사용되고 있다. 이는 알지네이트 인상재가 ①사용하기 쉽고, ②환자에게 거부감이 적고, ③특수한 장비의 사용이 필요하지 않으며, ④정확히 사용하면 상당히 정밀한 인상이 가능하기 때문이다. 알지네이트 인상재의 정확한 사용법을 정리한다.

  • PDF

Production of alginate hollow tube by diffusion of hydrogen ions at oil-prepolymer interface using a microfluidic chip (Oil-prepolymer 계면에서의 수소이온 확산을 통한 마이크로 플루이딕 칩 기반의 alginate hollow tube 제조)

  • Lee, Jae-Seon;Tran, Buu Minh;Nguyen, Phuoc Ouang Huy;Lee, Nae-Yun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.109-109
    • /
    • 2017
  • 알지네이트 하이드로 젤은 해조류에서 추출되는 천연 고분자인 알지네이트가 칼슘 또는 마그네슘 양이온과 이온가교(Ioninc cross linking)를 형성할 때 알지네이트의 고분자 구조가 칼슘, 마그네슘 양이온을 감싸면서 형성되는 고분자이다. 알지네이트 하이드로 젤은 높은 생체적합성(Biocompatibility)으로 인해 세포 재생을 위한 조직공학 및 재생의학, 약물전달 등의 제약 관련 분야에 광범위하게 적용될 수 있는 물질로 많은 연구가 이루어지고 있다. 본 연구에서는 마이크로 플루이딕 칩을 이용하여 알지네이트 튜브를 제조하였다. 먼저 유동 포커싱 방식(flow focussing)을 유도할 수 있는 PDMS(Polydimethylsiloxane) 마이크로 플루이딕 칩을 제조하였다. 마이크로 플루이딕 칩은 CNC(Computer Numeric Control) milling machine을 이용한 template를 만들고 NOA mold를 이용하여 최종 PDMS 칩을 제작하였다. 튜브를 만들기 위한 마이크로 채널은 내부 채널 ($200{\times}200um$), 중간 채널 ($200{\times}200um$) 및 외부 채널 ($200{\times}200um$)로 구성되며 내부, 중간, 외부의 유체가 합류하는 수집채널은 폭 500 um, 깊이 200 um로 구성되었다. 운반체로는 5%의 acetic acid를 함유한 mineral oil를 이용하였으며 내부의 core flow는 $H_2O$로 하였다. 중간 유체인 2% 알지네이트 프리폴리머는 칼슘 이온의 존재 하에서 젤화 과정이 매우 빠르기 때문에 마이크로 채널 내부에서의 반응을 제어하고 막힘을 방지하기 위해 수용성 복합 칼슘-에틸렌 디아민 테트라 아세트산 (EDTA)을 사용하였다. 본 마이크로 플루이딕 칩에 각각의 유체를 이동시켰을 때, 운반체인 oil phase의 수소이온은 중간 유체인 알지네이트 프리폴리머와의 계면을 통해 확산되어 Ca-EDTA 복합체로부터 칼슘 양이온의 방출을 유발하게 된다. 방출된 칼슘 양이온은 알지네이트 고분자와의 이온 가교를 통해 알지네이트 하이드로 젤을 형성하여, 각 유체의 flow에 따라 알지네이트 튜브를 쉽고 빠르게 제조 가능하였다. 본 연구에서 제조된 알지네이트 튜브는 인체 내 장기간 약물 전달을 위한 나노섬유로 활용하거나 인공혈관을 구성하는 extracellular matrix로 활용될 잠재력을 가지고 있어 추후 활발한 연구개발이 진행될 예정이다.

  • PDF

Preparation of Alginate Microspheres Using Membrane Emulsification Method (막유화법에 의한 알지네이트 Microsphere의 제조)

  • Youm Kyung Ho;Choi Yong Han;Dianne E. Wiley
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.218-229
    • /
    • 2004
  • We prepared monodispersed calcium alginate microspheres by controlling various conditions of emulsification procedure using a lab-scale batch type membrane emulsification system equipped with SPG (Shirasu porous glass) tubular membranes. We determined the effects of process parameters of membrane emulsification (ratio of dispersed phase to continuous phase, alginate concentration, emulsifier concentration, type and concentration of stabilizer, transmembrane pressure, concentration of crosslinking agent, stirring speed and membrane pore size) on the mean size and size distribution of alginate microspheres. The increase of the ratio of dispersed phase to continuous phase, transmembrane pressure and alginate concentration led to the increase in the mean size of alginate microspheres. On the contrary, the increase in emulsifier concentration, stirring speed of the continuous phase and concentration of the crosslinking agent caused the reduction of the mean size of microspheres. Through controlling these parameters, monodisperse alginate microspheres with about $6{\mu}{\textrm{m}}$ of the mean size and 1.1 of the size distribution value were finally prepared in case of the using SPC membrane with the pore size of $2.9{\mu}{\textrm{m}}$.

Preparation of Alginate Microspheres by Rotating Membrane Emulsification (회전 막유화에 의한 알지네이트 미소 구체의 제조)

  • Min, Kyoung Won;Youm, Kyung Ho
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.52-60
    • /
    • 2021
  • When preparing calcium alginate microspheres using rotating membrane emulsification that rotates SPG (Shirasu porous glass) tubular membrane in the continuous phase, the optimal conditions of rotating membrane emulsification process parameters for producing monodisperse microspheres were determined. We determined the effects of process parameters of rotating membrane emulsification (the rotating speed of membrane module, the transmembrane pressure, the ratio of dispersed phase to continuous phase, the alginate concentration, the emulsifier concentration, the stabilizer concentration, the crosslinking agent concentration, and the membrane pore size) on the mean size and size distribution of alginate microspheres. As a result, the size of the microspheres decreased as the rotating speed of membrane module, the emulsifier concentration, and the crosslinking agent concentration increased among the process parameters of rotating membrane emulsification. On the contrary, as the ratio of dispersed phase to continuous phase, the transmembrane pressure, and the alginate concentration increased, the size of the microspheres increased. In the rotating membrane emulsification using an SPG membrane with a pore size of 3.2 ㎛, it was possible to finally prepare monodisperse alginate microspheres with a particle size of 4.5 ㎛ through the control of process parameters.

Effect of mixing method and storage time on dimensional stability of alginate impressions materials (혼합 방법과 보관 시간이 알지네이트 인상재의 체적 안정성에 미치는 효과)

  • Bang, Hyun-Ji;Shim, Hyun-Ah;Cho, Young-Eun;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.2
    • /
    • pp.86-94
    • /
    • 2020
  • Purpose: The purpose of this study is to compare the volume stability depending on the mixing methods and storage time for the conventional alginate and extended-pour alginate. Materials and methods: An arch-shaped metal model was fabricated, and one conventional alginate and two extended-pour alginates were used to take impressions using different mixing methods (hand and automatic). 120 impressions were taken (40 per each alginate) and stone models were made in accordance with the different storage times (immediate, 2 days, 5 days, and 6 days). The models were scanned with a 3D table scanner and dimensional change was measured by superimposing the scan data. Using SAS 9.4 (SAS Institute Inc., Cary, NC, USA), the general linear model and Tukey's post hoc test was conducted for statistical analysis (P<.001). Results: There was no statistically significant difference in the dimensional accuracy between two mixing methods, and the volume change was minimum when the stone was poured immediately in all groups. Dimensional accuracy showed a statistically significant difference between groups after 2 days of storage, and extended-pour alginate showed higher accuracy after 5 days of storage comparing to conventional one. Large amounts of volume change were showed at 2 - 5 days for conventional alginate and at 5 - 6 days for extended pour alginate. Conclusion: The mixing method of alginate does not affect volume stability. Although extended-pour alginate has better volume stability than conventional alginate for a long time, it is recommended to pour stone as soon as possible.

Preparation and Release Property of Alginate Beads Immobilizing Poly(N-isopropylacrylamide-co-dimethylamino ethyl methacrylate) (Poly(N-isopropylacrylamide-co-dimethylamino ethyl methacrylate)가 고정화된 알지네이트 비드 제조 및 방출 특성)

  • Kang, Mi-Kyoung;Kim, Jin-Chul
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.79-83
    • /
    • 2010
  • Alginate beads were prepared using poly(N-isopropylacrylamide-co-dimethylamino ethyl methacrylate)(P(NIPAM-co-DMAEMA)). First, P(NIPAM-co-DMAEMA) was immobilized on the surface of alginate beads by taking advantage of electrostatic interaction between alginate and P(NIPAM-co-DMAEMA). Second, P(NIPAM-co-DMAEMA) was contained in the matrix of alginate beads. P(NIPAM-co-DMAEMA) were prepared by a free radical polymerization at $74^{\circ}C$ for 12 h. The weight ratio of NIPAM to DMAEMA monomer was 95/5. The copolymer was identified by $^1H$-NMR. Releases from the alginate beads were observed at 30, 37, and $45^{\circ}C$ using blue dextran or FITC-dextran(fluorescein isothiocyanate-dextran) as a model drug. The effect of temperature on the degree of release from the beads was insignificant. FITC-dextran was released more than blue dextran possibly due to its smaller molecular weight.

Antibacterial Properties of Silver-alginate/PVP Nanofiber (은-알지네이트/PVP 나노섬유의 항균 특성)

  • Choi, Yoo-Sung;Min, Kyung-Du;Yoon, Doo-Soo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.416-422
    • /
    • 2013
  • In order to incorporate silver ions into the alginate, silver-alginate was prepared with aqueous solutions of silver nitrate. In the study, the silver-alginate was prepared by blending with poly vinylpyrrolidone solutions and the electrospinning was performed by using this blend solution. Antibacterial properties of silver-alginate/PVP solutions were estimated for Escherichia coli and Staphylococcus aureus by the colony counting test. Electrospinning conditions of silver-alginate/PVP solution were the tip-to-collector distance of 22 cm, the flow rate of the solution at 0.01 mL/min, and the voltage at 26 kV. The form and size of silver-alginate/PVP nanofibers were estimated by SEM and Image J. The average diameter of the electrospun SA5P15 fibers was 124 nm and showed a narrow diameter distribution. The reduction of bacteria for SA5P15 exhibited 99.9% after 24 h.

In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions (미세 채널에서 칼슘이온 물질전달을 이용한 단분산성 알지네이트 하이드로젤 입자의 실시간 젤화)

  • Song, YoungShin;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.632-637
    • /
    • 2014
  • A microfluidic method for the in situ production of monodispersed alginate hydrogels using biocompatible polymer gelation by crosslinker mass transfer is described. Gelation of the hydrogel was achieved in situ by the dispersed calcium ion in the microfluidic device. The capillary number (Ca) and the flow rate of the disperse phase which are important operating parameters mainly influenced the formation of three distinctive flow regions, such as dripping, jetting, and unstable dripping. Under the formation of dripping region, monodispersed alginate hydrogels having a narrow size distribution (C.V=2.71%) were produced in the microfluidic device and the size of the hydrogels, ranging from 30 to $60{\mu}m$, could be easily controlled by varying the flow rate, viscosity, and interfacial tension. This simple microfluidic method for the production of monodisperse alginate hydrogels shows strong potential for use in delivery systems of foods, cosmetics, inks, and drugs, and spherical alginate hydrogels which have biocompatibility will be applied to cell transplantation.

Chitosan-alginate Gel Modified Poly (L-Lactic-co-ε-Caprolactone) (PLCL) as a Scaffold for Cartilage Tissue Engineering (변형된 키토산 알지네이트 겔 poly (L-Lactic-co-ε-Caprolactone) 지지체의 연골 조직 재생 평가)

  • Sutradhar, Bibek Chandra;Hwang, Yawon;Choi, Seokhwa;Kim, Gonhyung
    • Journal of Veterinary Clinics
    • /
    • v.32 no.3
    • /
    • pp.224-230
    • /
    • 2015
  • This study was designed in the fabricated poly (L-Lactic-co-${\varepsilon}$-Caprolactone) (PLCL) scaffold using chitosan-alginate hydrogel, which would be more suitable to maintain the biological and physiological functions continuing three dimensional spatial organizations for chondrocytes. As a scaffold, hydrogels alone is weak at endure complex loading within the body. In this study, we made cell hybrid scaffold constructs with poly (L-Lactic-co-${\varepsilon}$-Caprolactone) (PLCL) scaffold and hydrogels to make a three-dimensional composition of cells and extracellular matrix, which would be a mimic of a native cartilage. Using a particle leaching technique with NaCl, we fabricated a highly-elastic scaffold from PLCL with 85% porosity and $300-500{\mu}m$ pore size. A mixture of bovine chondrocytes and chitosan-alginate gel was seeded and compared with alginate as a control on the PLCL scaffold. The cell maturation, proliferation, extracellular matrix synthesis, glycosaminoglycans (sGAG) production and collagen type-II expressions were better in chondrocytes seeded in chitosan-alginate hydrogel than in alginate only. These results indicate that chondrocytes with chitosan-alginate gel on PLCL scaffolds provide an appropriate biomimetic environment for cell proliferation and matrix synthesis, which could successfully be used for cartilage repair and regeneration.