• Title/Summary/Keyword: 신호 왜곡

Search Result 999, Processing Time 0.027 seconds

A Novel Fast and High-Performance Image Quality Assessment Metric using a Simple Laplace Operator (단순 라플라스 연산자를 사용한 새로운 고속 및 고성능 영상 화질 측정 척도)

  • Bae, Sung-Ho;Kim, Munchurl
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.157-168
    • /
    • 2016
  • In image processing and computer vision fields, mean squared error (MSE) has popularly been used as an objective metric in image quality optimization problems due to its desirable mathematical properties such as metricability, differentiability and convexity. However, as known that MSE is not highly correlated with perceived visual quality, much effort has been made to develop new image quality assessment (IQA) metrics having both the desirable mathematical properties aforementioned and high prediction performances for subjective visual quality scores. Although recent IQA metrics having the desirable mathematical properties have shown to give some promising results in prediction performance for visual quality scores, they also have high computation complexities. In order to alleviate this problem, we propose a new fast IQA metric using a simple Laplace operator. Since the Laplace operator used in our IQA metric can not only effectively mimic operations of receptive fields in retina for luminance stimulus but also be simply computed, our IQA metric can yield both very fast processing speed and high prediction performance. In order to verify the effectiveness of the proposed IQA metric, our method is compared to some state-of-the-art IQA metrics. The experimental results showed that the proposed IQA metric has the fastest running speed compared the IQA methods except MSE under comparison. Moreover, our IQA metric achieves the best prediction performance for subjective image quality scores among the state-of-the-art IQA metrics under test.

Estimating Visitors on Water-friendly Space in the River Using Mobile Big Data and UAV (통신 빅데이터와 무인기 영상을 활용한 하천 친수지구 이용객 추정)

  • Kim, Seo Jun;Kim, Chang Sung;Kim, Ji Sung
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.250-257
    • /
    • 2019
  • Recently, 357 water-friendly space were established near the main streams of the country through the Four Major Rivers Project, which was used as a resting and leisure space for the citizens, and the river environment and ecological health were improved. We are working hard to reduce the number of points and plan and manage the water-friendly space. In particular, attempts are being made to utilize mobile big data to make more scientific and systematic research on the number of users. However, when using mobile big data compared to the existing method of conducting field surveys, it is possible to easily identify spatial user movement patterns, but it is different from the actual amount of use, so various verifications are required to solve this problem. Therefore, this study evaluated the accuracy of estimating the number of users using mobile big data by comparing the number of visitors using mobile big data and the number of visitors using drone for Samrak ecological park located in the mouth of Nakdong River. As a result, in the river hydrophilic district, it was difficult to accurately estimating the usage pattern of each facility due to the low precision of pCELL, and it was confirmed that the usage patterns in the park could be distorted due to the signals stopped at roads and parking lots. Therefore, it is necessary to improve the number of pCELLs in the water-friendly space and to estimate the number of visitors excluding facilities such as roads and parking lots in future mobile big data processing.

High Efficiency GaN HEMT Power Amplifier Using Harmonic Matching Technique (고조파 정합 기법을 이용한 고효율 GaN HEMT 전력 증폭기)

  • Jin, Tae-Hoon;Kwon, Tae-Yeop;Jeong, Jinho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2014
  • In this paper, we present the design, fabrication and measurement of high efficiency GaN HEMT power amplifier using harmonic matching technique. In order to achieve high efficiency, harmonic load-pull simulation is performed, that is, the optimum load impedances are determined at $2^{nd}$ and $3^{rd}$ harmonic frequencies as well as at the fundamental. Then, the output matching circuit is designed based on harmonic load-pull simulation. The measurement of the fabricated power amplifier shows the linear gain of 20 dB and $P_{1dB}$(1 dB gain compression point) of 33.7 dBm at 1.85 GHz. The maximum power added efficiency(PAE) of 80.9 % is achieved at the output power of 38.6 dBm, which belongs to best efficiency performance among the reported high efficiency power amplifiers. For W-CDMA input signal, the power amplifier shows a PAE of 27.8 % at the average output power of 28.4 dBm, where an ACLR (Adjacent Channel Leakage Ratio) is measured to be -38.8 dBc. Digital predistortion using polynomial fitting was implemented to linearize the power amplifiers, which allowed about 6.2 dB improvement of an ACLR performance.

Color Image Rendering using A Modified Image Formation Model (변형된 영상 생성 모델을 이용한 칼라 영상 보정)

  • Choi, Ho-Hyoung;Yun, Byoung-Ju
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.71-79
    • /
    • 2011
  • The objective of the imaging pipeline is to transform the original scene into a display image that appear similar, Generally, gamma adjustment or histogram-based method is modified to improve the contrast and detail. However, this is insufficient as the intensity and the chromaticity of illumination vary with geometric position. Thus, MSR (Multi-Scale Retinex) has been proposed. the MSR is based on a channel-independent logarithm, and it is dependent on the scale of the Gaussian filter, which varies according to input image. Therefore, after correcting the color, image quality degradations, such as halo, graying-out, and dominated color, may occur. Accordingly, this paper presents a novel color correction method using a modified image formation model in which the image is divided into three components such as global illumination, local illumination, and reflectance. The global illumination is obtained through Gaussian filtering of the original image, and the local illumination is estimated by using JND-based adaptive filter. Thereafter, the reflectance is estimated by dividing the original image by the estimated global and the local illumination to remove the influence of the illumination effects. The output image is obtained based on sRGB color representation. The experiment results show that the proposed method yields better performance of color correction over the conventional methods.

Implementation of Turbo Decoder Based on Two-step SOVA with a Scaling Factor (비례축소인자를 가진 2단 SOVA를 이용한 터보 복호기의 설계)

  • Kim, Dae-Won;Choi, Jun-Rim
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.11
    • /
    • pp.14-23
    • /
    • 2002
  • Two implementation methods for SOVA (Soft Output Viterbi Algorithm)of Turbo decoder are applied and verfied. The first method is the combination of a trace back (TB) logic for the survivor state and a double trace back logic for the weight value in two-step SOVA. This architecure of two-setp SOVA decoder allows important savings in area and high-speed processing compared with that of one-step SOVA decoding using register exchange (RE) or trace-back (TB) method. Second method is adjusting the reliability value with a scaling factor between 0.25 and 0.33 in order to compensate for the distortion for a rate 1/3 and 8-state SOVA decoder with a 256-bit frame size. The proposed schemes contributed to higher SNR performance by 2dB at the BER 10E-4 than that of SOVA decoder without a scaling factor. In order to verify the suggested schemes, the SOVA decoder is testd using Xillinx XCV 1000E FPGA, which runs at 33.6MHz of the maximum speed with 845 latencies and it features 175K gates in the case of 256-bit frame size.

Nonlinearity Compensation of Electroabsorption Modulator by using Semiconductor Optical Amplifier (반도체 광증폭기를 이용한 전계흡수 광변조기 비선형성 보상)

  • Lee, Chang-Hyeon;Son, Seong-Il;Han, Sang-Guk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.5
    • /
    • pp.23-30
    • /
    • 2000
  • To compensate the nonlinearity of electroabsorption modulator(EAM) resulting from its near exponential transfer function, a semiconductor optical amplifier(SOA) that has a log transfer function is used. Since the transfer function of SOA is inverse to that of EAM, the intermodulation distortion(IMD) of EAM can be reduced by cascading SOA to EAM. Also, the RF gain can be increased by the optical gain of SOA. For these reasons, spurious free dynamic range(SFDR) of EAM is enhanced by connecting SOA to EAM in series and operating in gain salutation region. To improve the nonlinearity compensation of EAM, the increased gain of SOA is required and the slope of gain saturation, the ratio of gain to input SOA power, needs to be steep. However, signal spontaneous beat noise that is the dominant system noise increases in proportion to the gain such that the SFDR of EAM is reduced. The higher the gain of SOA is, the more ASE is increased. Thus the noise level of system is increased and the following SFDR of EAM is decreased. The slope of gain saturation region and ASE of have trade-off relation and the optimization is achieved at 8㏈ optical gain. 9㏈ enhancement of SFDR of EAM is obtained. This scheme is easy to embody the linear EAM and the integration with three components (DFB-LD, EAM and SOA) offers many merits, such as low insertion loss, low chirping and low polarization sensitivity.

  • PDF

Performance Evaluation of a Peak Windowing-Based PAPR Reduction Scheme in OFDM Polar Transmitters (OFDM polar transmitter에서 피크 윈도잉 기반의 PAPR 감소기법의 성능평가)

  • Seo, Man-Jung;Shin, Hee-Sung;Im, Sung-Bin;Jung, Jae-Ho;Lee, Kwang-Chun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.42-48
    • /
    • 2008
  • Next generation wireless communication systems require RF transceivers that enable multiband/multimode operations. Polar transmitters are known as good candidates for high data rate systems such as EDGE (Enhanced Data Rates for GSM Evolution), WCDMA (Wideband Code Division Multiple Access), and WLAN (Wireless Local Area Network) because they can obtain high efficiency by using efficient switched-mode RF power amplifiers. In this paper, we investigate the performance of a simple peak windowing scheme for the OFDM (Orthogonal frequency Division Multiplexing) polar transmitter, which requires no change of a receiver structure or no additional information transmission. The approach we employed is to apply the peak windowing scheme to the amplitude modulated signals of the polar transmitter to reduce the PAPR (Peak-to-Average Power Ratio). The BER (Bit Error Rate) and EVM (Error Vector Magnitude) performances are measured for various window types and lengths. The simulation results demonstrate that the proposed algorithm mitigates out-of-band distortion introduced by clipping along with PAPR reduction.

NRZ versus RZ Modulation Format in Lumped Dispersion Managed Systems (집중형 분산 제어 시스템에서 NRZ 변조 형식 대 RZ 변조 형식)

  • Lee, Seong-Real;Cho, Sung-Eon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.328-335
    • /
    • 2008
  • The system performance of NRZ format in WDM transmission system with lumped dispersion management(DM) and optical phase conjugator(OPC) is compared with that of RZ format. It is confirmed that eye opening penalty(EOP) of both NRZ and RZ format in WDM transmission system having lumped DM combined with OPC are greatly improved than those in WDM system with only OPC. The optimal net residual dispersion(NRD) in the case of RZ format is decided to so small value that path-averaged dispersion coefficient become almost zero, while that in the case of NRZ format is decided to larger value, for the best improvement of overall WDM channels. It is also confirmed that EOP in the case of RZ format is more improved than that in the case of NRZ format in lumped DM with optimal NRD. This is resulted from that lumped DM combined with OPC suppress the signal distortion due to intrachannel four-wave mixing(IFWM) and intrachannel cross phase modulation(IXPM). Consequently, lumped DM combined with OPC proposed in this paper is effective technique to mitigate intrachannel nonlinearities in WDM transmitting RZ format.

A Low Jitter Delay-Locked Loop for Local Clock Skew Compensation (로컬 클록 스큐 보상을 위한 낮은 지터 성능의 지연 고정 루프)

  • Jung, Chae-Young;Lee, Won-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.309-316
    • /
    • 2019
  • In this paper, a low-jitter delay-locked loop that compensates for local clock skew is presented. The proposed DLL consists of a phase splitter, a phase detector(PD), a charge pump, a bias generator, a voltage-controlled delay line(VCDL), and a level converter. The VCDL uses self-biased delay cells using current mode logic(CML) to have insensitive characteristics to temperature and supply noises. The phase splitter generates two reference clocks which are used as the differential inputs of the VCDL. The PD uses the only single clock from the phase splitter because the PD in the proposed circuit uses CMOS logic that consumes less power compared to CML. Therefore, the output of the VCDL is also converted to the rail-to-rail signal by the level converter for the PD as well as the local clock distribution circuit. The proposed circuit has been designed with a $0.13-{\mu}m$ CMOS process. A global CLK with a frequency of 1-GHz is externally applied to the circuit. As a result, after about 19 cycles, the proposed DLL is locked at a point that the control voltage is 597.83mV with the jitter of 1.05ps.

Artifact Reduction in Sparse-view Computed Tomography Image using Residual Learning Combined with Wavelet Transformation (Wavelet 변환과 결합한 잔차 학습을 이용한 희박뷰 전산화단층영상의 인공물 감소)

  • Lee, Seungwan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.295-302
    • /
    • 2022
  • Sparse-view computed tomography (CT) imaging technique is able to reduce radiation dose, ensure the uniformity of image characteristics among projections and suppress noise. However, the reconstructed images obtained by the sparse-view CT imaging technique suffer from severe artifacts, resulting in the distortion of image quality and internal structures. In this study, we proposed a convolutional neural network (CNN) with wavelet transformation and residual learning for reducing artifacts in sparse-view CT image, and the performance of the trained model was quantitatively analyzed. The CNN consisted of wavelet transformation, convolutional and inverse wavelet transformation layers, and input and output images were configured as sparse-view CT images and residual images, respectively. For training the CNN, the loss function was calculated by using mean squared error (MSE), and the Adam function was used as an optimizer. Result images were obtained by subtracting the residual images, which were predicted by the trained model, from sparse-view CT images. The quantitative accuracy of the result images were measured in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). The results showed that the trained model is able to improve the spatial resolution of the result images as well as reduce artifacts in sparse-view CT images effectively. Also, the trained model increased the PSNR and SSIM by 8.18% and 19.71% in comparison to the imaging model trained without wavelet transformation and residual learning, respectively. Therefore, the imaging model proposed in this study can restore the image quality of sparse-view CT image by reducing artifacts, improving spatial resolution and quantitative accuracy.