Nonlinearity Compensation of Electroabsorption Modulator by using Semiconductor Optical Amplifier

반도체 광증폭기를 이용한 전계흡수 광변조기 비선형성 보상

  • 이창현 (연세대학교 전기·컴퓨터공학과) ;
  • 손성일 (연세대학교 전기·컴퓨터공학과) ;
  • 한상국 (연세대학교 전기·컴퓨터공학과)
  • Published : 2000.05.01

Abstract

To compensate the nonlinearity of electroabsorption modulator(EAM) resulting from its near exponential transfer function, a semiconductor optical amplifier(SOA) that has a log transfer function is used. Since the transfer function of SOA is inverse to that of EAM, the intermodulation distortion(IMD) of EAM can be reduced by cascading SOA to EAM. Also, the RF gain can be increased by the optical gain of SOA. For these reasons, spurious free dynamic range(SFDR) of EAM is enhanced by connecting SOA to EAM in series and operating in gain salutation region. To improve the nonlinearity compensation of EAM, the increased gain of SOA is required and the slope of gain saturation, the ratio of gain to input SOA power, needs to be steep. However, signal spontaneous beat noise that is the dominant system noise increases in proportion to the gain such that the SFDR of EAM is reduced. The higher the gain of SOA is, the more ASE is increased. Thus the noise level of system is increased and the following SFDR of EAM is decreased. The slope of gain saturation region and ASE of have trade-off relation and the optimization is achieved at 8㏈ optical gain. 9㏈ enhancement of SFDR of EAM is obtained. This scheme is easy to embody the linear EAM and the integration with three components (DFB-LD, EAM and SOA) offers many merits, such as low insertion loss, low chirping and low polarization sensitivity.

지수함수형태의 전달함수를 갖는 전계흡수 광변조기(electroabsorption modulator: EAM)의 비선형성 보상을 위해 로그함수형태의 전달함수를 갖는 반도체 광증폭기(semiconductor optical amplifier : SOA)를 이용한다. 우선 SOA의 전달함수는 EAM의 전달함수와 역함수 관계를 갖기 때문에 EAM의 상호변조왜곡 (intermodulation distortion: IMD)을 보상한다. 더불어 SOA가 제공하는 이득에 의해 변조신호는 증폭되어진다. 이 두 가지에 의해 EAM의 SFDR(spurious free dynamic range)은 증가한다. 이때 SOA는 EAM 뒷단에 직렬로 연결되어 이득포화영역에서 동작되어진다. EAM의 IMD 보상을 향상시키기 위해서는 SOA의 이득을 증가시켜 이득포화영역 기울기를 증가시켜야 한다. 하지만 SOA의 이득 증가에 따라 ASE 잡음도 증가하여 시스템의 잡음레벨을 높여 EAM의 SFDR은 감소한다. 즉 SOA의 이득포화영역 기울기와 ASE 잡음은 이득에 대해 trade-off를 가지게 되고 모의실험 결과 이득이 약 8㏈일 때 최적화 된다. 이 지점에서 EAM의 SFDR 향상은 약 9㏈였다. SOA를 사용한 EAM 선형성 향상 방법은 구성이 간편하고 3개의 소자를 집적할 경우 낮은 삽입손실, 낮은 편광의존성, 낮은 처핑 등 효율적인 아날로그 광변조기로 이용될 수 있다.

Keywords

References

  1. R. B. Welstand, C. K. Sun, S. A. Pappert, Y. Z. Liu, J. M. Chen, J. T. Zhu, A. L. Kellner, and P. K. L. Yu, 'Enhanced Linear Dynamic Range Property of Franz-Keldysh Effect Waveguide Modulator', IEEE Photonics Technology Letters, Vol. 7, pp. 751-753, 1995 https://doi.org/10.1109/68.393194
  2. Shin-ichi Kaneko, Masaki Noda, Yasunori Miyazaki, Hiromitsu Watanabe, Kumio Kasahara, and Yoru Tajime, 'An Electroabsorption Modulator Module for Digital and Analog Applications', Journal of Lightwave Technology, Vol. 17, pp. 669-676, 1999 https://doi.org/10.1109/50.754798
  3. G. E. Betts, L. M. Walpita, W. S. C. Chang, and R. F. Mathis, 'On the Linear Dynamic Range of Integrated Electrooptical Modulators', IEEE Journal of Quantum Electronics, Vol. 22, pp. 1009-1011, 1986
  4. B. H. Kolner and D. W. Dolfi, 'Intermodulation distortion and compression in an integrated electrooptic modulator', Applied Optics, Vol. 26, pp. 3676-3680, 1987
  5. L. M. Johnson and H. V. Roussell, 'Reduction of intermodulation distortion in interferometric optical modulators', Optics Letters, Vol. 13, pp. 928-930, 1988
  6. M. L. Farwell, Z. Q. Tin, E. Wooten, and W. S. C. Chang, 'An Electrooptic Intensity Modulator with Improved Linearity', IEEE Photonics Technology Letters, Vol. 3, pp. 792-795, 1991 https://doi.org/10.1109/68.84495
  7. W. B. Bridges, and J. H. Schaffner, 'Distortion in Linearized Electrooptic Modulators', IEEE Transactions on Microwave Theory and Techniques, Vol. 43, pp. 2184-2197, 1995 https://doi.org/10.1109/22.414563
  8. G. C. Wilson, T. H. Wood, and U. Koren, 'Integrated Electroabsorption Modulator/DBR Laser Linearized by RF Current Modulation', IEEE Photonics Technology Letters, Vol. 7, pp. 1154-1156, 1995 https://doi.org/10.1109/68.466574
  9. T. Iwai, K. Sato, and K. I. Suto, 'Reduction of Dispersion-Induced Distortion in SCM Transmission Systems by Using Predistortion-Linearized MQW-EA Modulators', Journal of Lightwave Technology, Vol. 15, pp. 169-178, 1997 https://doi.org/10.1109/50.554312
  10. K. K. Loi, J. H. Hodiak, X. B. Mei, C. W. Tu, and W. S. C. Chang, 'Linearization of 1.3-${\mu}m$ MQW Electroabsorption Modulators Using an All Optical Frequency-Insensitive Technique', IEEE Photonics Technology Letters, Vol. 10, pp. 964-966, 1998 https://doi.org/10.1109/68.681285
  11. M. Asghari, I. H. White, and R. V. Penty, 'Wavelength Conversion Using Semiconductor Optical Amplifiers', Journal of Lightwave Technology, Vol. 15, pp. 1181-1190, 1997 https://doi.org/10.1109/50.596964
  12. K. Obermann, S. Kindt, D. Breuer, and K. Petermann, 'Performance Analysis of Wavelength Converters Based on Cross-Gain Modulation in Semiconductor-Optical Amplifiers', Journal of Lightwave Technology, Vol. 16, pp. 78-85, 1998 https://doi.org/10.1109/50.654987
  13. I. D. Henning, M. J. Adams, and J. V. Collins, 'Performance Predictions from a New Optical Amplifier Model', IEEE Journal of Quantum Electronics, Vol. 21, pp. 609-613, 1985 https://doi.org/10.1109/JQE.1985.1072709
  14. M. J. Adams, J. V. Collins, and I. D. Henning, 'Analysis of semiconductor laser optical amplifiers', IEE Proceedings, Vol. 132, pp. 58-63, 1985
  15. L. Kazovsky, S. Benedetto, and A. Willner, Optical Fiber Communication Systems, Artech House, Boston . London, 1996
  16. M. G. Oberg, and N. A. Olsson, 'Wavelength dependance of noise figure of a travelling-wave GaInAsP/InP Laser Amplifier', Electronics Letters, Vol. 24, pp. 99-100, 1988. https://doi.org/10.1049/el:19880065
  17. T. Mukai and T. Saitoh, '5.2dB Noise Figure in a 1.5${\mu}m$ InGaAsP Travelling-wave Laser Amplifier', Electronics Letters, Vol. 23, pp. 216-218, 1987 https://doi.org/10.1049/el:19870152