• Title/Summary/Keyword: 시스템자코비안

Search Result 27, Processing Time 0.035 seconds

Control of Robot System on the Elastic Base by Approximate Jacobian Operators (근사 자코비안 연산자를 이용한 탄성 지지부를 갖는 로봇 시스템의 제어)

  • Lee, Sun;Lee, Ho-Gil;Hwang, Sung-Ho;Rhee, Se-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.45-52
    • /
    • 2001
  • This paper presents a study on the position tracking control of a robot system on the uncertain elastic base. The elastic bathe is a nonholonomic system but it can be changed into holonomic system, which is much easier to analyze, by modeling an elastic base as a virtual robot that has passive joints. Also, Jacobian operators, which represent the overall robot system including base movement, are defined and applied to the changed model. However, because base movements are not known, the exact Jacobian operators can't be estimated. The control algorithm proposed is that uses only Jacobians of a real robot as approximate Jacobian operators. Therefore the approximate Jacobian operators compensate the measured errors from external sensors. The proposed control strategy is evaluated by the simulation and experiment of a single-axis robot system on the elastic base.

  • PDF

Construction of System Jacobian in the Equations of Motion Using Velocity Transformation Technique (속도변환법을 이용한 운동방정식의 시스템자코비안 구성)

  • Lee, Jae-Uk;Son, Jeong-Hyeon;Kim, Gwang-Seok;Yu, Wan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1966-1973
    • /
    • 2001
  • The Jacobian matrix of the equations of motion of a system using velocity transformation technique is derived via variation methods to apply the implicit integration algorithm, DASSL. The concept of generalized coordinate partitioning is used to parameterize the constraint set with independent generalized coordinates. DASSL is applied to determine independent generalized coordinates and velocities. Dependent generalized coordinates, velocities, accelerations and Lagrange multipliers are explicitly retained in the formulation to satisfy all of the governing kinematic and dynamic equations. The derived Jacobian matrix of a system is proved to be valid and accurate both analytically and through solution of numerical examples.

A Learning Method of PID Controller by Jacobian in Multi Variable System (다변수 시스템에서 자코비안을 이용한 PID 제어기 학습법)

  • 임윤규;정병묵
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.112-119
    • /
    • 2003
  • Generally, PID controller is not suitable to control multi variable system because it is very difficult to tune the PID gains. However, this paper shows that it is not hard to tune the PID gains if we can find a Jacobian matrix of the system. The Jacobian matrix expresses the ratio of output variations according to input variations. It is possible to adjust the input values in order to reduce the output error using the Jacobian. When the colt function is composed of error related terms, the gradient approach can tune the PID gains to minimize the function. In simulation, a hydrofoil catamaran with two inputs and two outputs is applied as a multi variable system. We can easily get the multi variable PID controller by the proposed teaming method. When the controller is compared with LQR controller, the performance is as good as that of LQR controller with a modeling equation.

The Output Feedback Control of Inverted Pendulum Systems for The Verification of Practical Use of Linear State Observers (선형 상태 관측기의 실용화 검증을 위한 도립진자 시스템의 출력 피드백 제어 실험)

  • Lee, Jong-Yeon;Cho, Kyu-Jung;Hyun, Chang-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.192-197
    • /
    • 2011
  • In this paper, the output feedback control of inverted pendulum systems is experimented for the practicality verification of the linear state observer. For the experiment, a pendulum system, CEM-IP-01 of Cemware Inc. is used and Lagrange equation and Jacobian linearization are adopted for the dynamic analysis of the pendulum system. In addition, the output responses of the state feedback control and the output feedback control of the pendulum system are compared before the experiment by Matlab. Finally, we directly verify the practical use of the linear state observer by recognizing and solving some real problem to control the inverted pendulum system in practice.

Control of Robot System on the Elastic Base with Uncertainty (탄성지지부를 갖는 로봇 시스템의 제어)

  • Lee, S.;Lee, H. G.;Rhee, S. H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.647-652
    • /
    • 2000
  • This paper presents a study on the position tracking control of robot system on the uncertain elastic base. The elastic base is modeled as a virtual robot which has passive joints and the control strategy is using approximate Jacobian operators. Jacobian operators represent the overall robot system including base movement. However, because we don't know the base movement we can't estimate the jacobian operators directly. The control algorithm is proposed which uses only Jacobian operators of a real robot as approximate Jacobian operators. The measured errors from external sensor are compensated by approximate Jacobian operators. The simulation results of a single-axis robot system show that the control strategy can be used for position tracking.

  • PDF

Linear Visual Feedback Conrtol using Binocular Visual Space (양안 시공간을 이용한 Linear Visual Feedback Control)

  • Lim, Seung-Woo;Park, Chang-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.74-79
    • /
    • 1995
  • This paper proposes the stereo LVFC-Robot which Imitates eyes and arms of man. we derived linear approximation equation between visual space and joint space by minimum square method and then applied it to the proposed stereo LVFC-Robot. As a result of a simulation, its efficency is verified. Compared with the stereo VFC, the stereo LVFC Robot don't need the Image Jacobian and the Robot Jacobian. Thus it is possible to control Robot in real time.

  • PDF

Optimal Neural Network Controller Design using Jacobian (자코비안을 이용한 최적의 신경망 제어기 설계)

  • 임윤규;정병묵;조지승
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.85-93
    • /
    • 2003
  • Generally, it is very difficult to get a modeling equation because multi-variable system has coupling relations between its inputs and outputs. To design an optimal controller without the modeling equation, this paper proposes a neural-network (NN) controller being learned by Jacobian matrix. Another major characteristic is that the controller consists of two separated NN controllers, namely, proportional control part and derivative control part. Simulation results for a catamaran system show that the proposed NN controller is superior to LQR in the regulation and tracking problems.

Control of an Omni-directional Mobile Robot Based on Camera Image (카메라 영상기반 전방향 이동 로봇의 제어)

  • Kim, Bong Kyu;Ryoo, Jung Rae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.84-89
    • /
    • 2014
  • In this paper, an image-based visual servo control strategy for tracking a target object is applied to a camera-mounted omni-directional mobile robot. In order to get target angular velocity of each wheel from image coordinates of the target object, in general, a mathematical image Jacobian matrix is built using a camera model and a mobile robot kinematics. Unlike to the well-known mathematical image Jacobian, a simple rule-based control strategy is proposed to generate target angular velocities of the wheels in conjunction with size of the target object captured in a camera image. A camera image is divided into several regions, and a pre-defined rule corresponding to the target-located image region is applied to generate target angular velocities of wheels. The proposed algorithm is easily implementable in that no mathematical description for image Jacobian is required and a small number of rules are sufficient for target tracking. Experimental results are presented with descriptions about the overall experimental system.

Vision-Based Robust Control of Robot Manipulators with Jacobian Uncertainty (자코비안 불확실성을 포함하는 로봇 매니퓰레이터의 영상기반 강인제어)

  • Kim, Chin-Su;Jie, Min-Seok;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.113-120
    • /
    • 2006
  • In this paper, a vision-based robust controller for tracking the desired trajectory a robot manipulator is proposed. The trajectory is generated to move the feature point into the desired position which the robot follows to reach to the desired position. To compensate the parametric uncertainties of the robot manipulator which contain in the control input, the robust controller is proposed. In addition, if there are uncertainties in the Jacobian, to compensate it, a vision-based robust controller which has control input is proposed as well in this paper. The stability of the closed-loop system is shown by Lyapunov method. The performance of the proposed method is demonstrated by simulations and experiments on a two degree of freedom 5-link robot manipulators.

  • PDF

Control of Underactuated Unstable Mechanical System Using Dynamic Scaling (다이나믹 스케일링을 이용한 과소 작동 불안정 기계 시스템의 제어)

  • Seo, Sang-Bo;Shim, Hyung-Bo;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1777-1778
    • /
    • 2008
  • 이 논문에서는 자유도보다 엑츄에이터가 부족한 과소 작동 기계 시스템의 지수적 안정을 보장하는 다이나믹 제어기법을 제시한다. 이 시스템의 원점에 대한 자코비안 선형화는 제어불능이므로 기존의 시불변 상태궤환 기법으로 안정화가 불가능하다는 특징을 가지고 있다. 이 논문에서는 추가 다이나믹스를 이용한 다이나믹 스케일링 기법과 수정된 역진 기법을 사용하여 제어목적을 달성한다.

  • PDF