• Title/Summary/Keyword: 시설내부 온도

Search Result 133, Processing Time 0.041 seconds

Comparison of Climatic Conditions of Sweet Pepper's Greenhouse between Korea and the Netherlands (한국과 네덜란드의 파프리카 재배온실의 시설 내.외부 기상환경 비교)

  • Jeong, Won-Ju;Myoung, Dong-Ju;Lee, Jeong-Hyun
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.244-252
    • /
    • 2009
  • This research aims at comparison of climatic conditions of sweet pepper's greenhouse between Korea (KOR) and the Netherlands (NL) to find out the reason of much lower yield in KOR than NL focus-ing on greenhouse climatic conditions. Hence, greenhouse climate data were obtained from each one commercial glasshouse in both countries. The crops (cv. 'Derby') were grown on rockwool slab with two stems per plant with 3.75plants/$m^2$ in KOR and three stems per plant with 2.5plants/$m^2$ or four stems per plant with 1.875plants/$m^2$ in NL. Even though plant density was differed but stem density was on the same to 7.5stems/$m^2$. There was no significantly difference on weekly growth of sweet pepper plant both countries, whereas harvested nodes to whole nodes of NL's plant was more than two times higher compared to KOR. The averaged daily global radiation during the whole growing periods was 14.5MJ/$m^2$/day in KOR and l2.1MJ/$m^2$/day in NL. Averaged 24h temperature was similar to both glasshouse as $21.6^{\circ}C$ in KOR and $21.2^{\circ}C$ in NL during the whole growing periods, however the variance was higher in KOR than NL. Humidity deficit (HD) was observed higher in KOR during the whole growing periods. Averaged day $CO_2$ concentration was measured contrary pattern in both countries because of heating to greenhouse on NL winter season. Averaged 24h temperature and day $CO_2$ concentration to daily global radiation was regular pattern in NL, whereas there are large scatter in KOR. Consequently, more irregular greenhouse climate condition in KOR could be induced irregularly crop growth.

Changes in Greenhouse Temperature and Solar Radiation by Fogging and Shading During Hydroponics in Summer Season (여름철 수경재배 시 포그 분무와 차광에 의한 하우스 내부 온도 및 광 환경 변화)

  • Lim, Mi Young;Jeong, Ho Jeong;Roh, Mi Young;Choi, Gyeong Lee;Kim, So Hui;Choi, Su Hyun
    • Journal of Bio-Environment Control
    • /
    • v.30 no.3
    • /
    • pp.230-236
    • /
    • 2021
  • Changes in greenhouse temperature and solar radiation due to fogging and shading were monitored during hydroponics in high temperature in summer season. Experiment 1 consists of four treatments, namely, Control, Shading, Fogging, and Fogging + Shading based on sunny days August. For Experiment 2, two melon cultivars of 'Dalgona' and 'Sopoong gaza' were cultivated in summer of 2020 using Fogging + Shading with the best result for temperature reduction effect from Experiment 1. As a result of Experiment 1, the effect of Fogging + Shading on temperature reduction was apparent where the inside was about 4℃ (as the lowest temperature) lower than the outside. Fogging + Shading showed the inside was 2-4℃ lower than the outside, and Fogging or Shading treatments had little difference, compared to the Control where the internal temperature of greenhouse was 3-4℃ higher than the external. For solar radiation changes between greenhouse inside and outside, the internal change was in a similar pattern between Fogging and Control, and between Shading and Fogging + Shading, respectively. In case of the Fogging treatment (similar with the Control) only the effect of solar radiation reduction as influenced by plastic greenhouse covering materials was examined. The Fogging + Shading had a very similar change in solar radiation to the Shading. Based on these results, Experiment 2 was conducted in summer of 2020 and resulted in a temperature reduction effect of about 3.9℃ according as the inside of air-conditioned greenhouse was kept 32.4℃ when the maximum temperature of the outside reached 36.3℃ in August during the cultivation period. In addition, the quality of melon fruit was good (1.3-1.5 kg of fruit weight, 12.6-13.3 of soluble solids content. In the case of using Fogging + Shading cooling treatment, it can bring about the effect of reducing the temperature during the high temperature in summer, and normal growth of melon and fruit harvesting were possible.

Experiment of Heat Transfer Characteristics through Insulated Farm Structures Coated with Surface Treatment (단열구조용 표면 코팅제의 열전달 특성 실험)

  • 서원명;윤용철;권진근;박성우
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2003.04a
    • /
    • pp.157-160
    • /
    • 2003
  • 일반적인 시설농업의 경우, 광을 주된 에너지원으로 하는 온실을 제외하면, 시설내부의 주요 환경인자인 온도 유지를 위해 단열이 요구된다. 특히 곡물을 저장하는 사일로를 비롯하여 최근 증가 추세를 보이는 시설버섯 재배사, 그리고 양봉사나 축사 등의 단열은 냉방 및 난방에 소요되는 경비와 관련됨으로서 영농의 경영합리화와 직결된다. 따라서 단열의 정도를 나타내는 R-치의 적정범위와 단열처리의 시공성 등은 시설의 초기투자와 유지관리에 영향을 미치게 된다. (중략)

  • PDF

Automatic Control System of Vertical Agitation Heater for Controlling Temperature of Greenhouse (시설하우스 온도 조절을 위한 수직형 교반 히터 자동제어 시스템)

  • Kwak, Yun-Ah;Park, Kyoung-Wook;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.623-628
    • /
    • 2015
  • As the current heating control of the greenhouse is located in specifically designed place, there is an inevitable difference in degrees depending on the latitude in it. Even though it is necessary to maintain the proper temperature in the greenhouse producing vegetables and fruit plants, the difference between ups and downs in the facilities results in the increasing energy consumption to both warm and cool down the facilities. The newest heating method, automatic control system of vertical agitation heater, which manipulates the inner air circulation efficiently, is suggested in this paper. The proposed system utilizes both the upper temperature and the lower temperature, and controls the air circulation fan and heating independently, so that maximizes the efficiency of heating with the minimum energy and implements predictable planning of farm products.

하나로 냉중성자원 시설계통 배기수집탱크 내 수소가스 분석

  • Son, U-Jeong;Choe, Jeong-Un;Jeong, Chang-Yong;U, Sang-Ik;Kim, Yeong-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.337-337
    • /
    • 2010
  • 하나로 반사체의 수직공 안에 설치된 냉중성자원 시설계통의 수조내기기는 원자로에서 생성되는 열중성자를 약 22K의 감속재로 감속시켜 0.1~10 meV 범위에서 높은 선속을 갖는 냉중성자를 생산한다. 냉중성자를 생산하기 위한 냉중성자원 시설계통의 구성은 감속재인 수소를 포함하고 있는 수소계통, 수소의 외부누출을 방지하기 위한 가스블랭킷계통, 극저온의 액체수소를 생산하기 위한 헬륨냉동계통, 극저온인 액체수소 층을 감속재용기 내에 유지하기 위한 진공계통 등으로 되어있다. 이들 계통 중 진공계통은 냉중성자원 시설계통의 정상운전 시 액체수소 열사이펀, 감속재용기 등의 냉중성자원 극저온 부품의 단열을 위하여 진공용기의 내부 진공도를 공정진공도 이하로 유지하기 위한 계통이다. 정상운전 시 진공계통으로부터 발생되는 배기 가스는 배기 수집탱크에 포집된다. 냉중성자원 시설계통으로부터 발생되는 배기가스는 배기수 집탱크를 통하여 수소의 누출여부를 확인한 후 원자로홀로 배기되도록 되어 있으며, 만일의 경우 탱크내부의 배기가스 수소 농도가 기준치인 3.5%이상일 때는 유입 원을 자동으로 차단하고, 희석용 가스인 고압의 질소를 주입하여 수소의 농도를 기준치 이하로 낮춘 후 원자로 홀로 자동 배출하도록 되어 있다. 본 논문에서는 냉중성자가 생산되는 냉중성자원 시설계통의 운전과정에서 진공계통으로부터 배출되는 배기가스를 배기수집탱크로 포집하고, 이 가스에 대해 수소가스의 농도를 분석하여 원자로 홀로 안전하게 배기할 수 있도록 수행된 수소가스 분석에 대해 기술하였다.

  • PDF

Development of CFD Model to Control Humidity in Greenhouse (온실내 수분제어를 위한 CFD 모델 개발)

  • 김문기;김기성;권혁진
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2002.04a
    • /
    • pp.74-79
    • /
    • 2002
  • 온실 내에서의 안정된 생산을 위하여 온도, 광, CO₂ 등의 환경 조절에 대한 연구는 지속적으로 수행되어 왔다. 그러나 온실 내부의 수분환경에 대해서는 많은 연구가 이루어지지 않고 있는 실정이다. 온실 내부의 적정한 상대습도는 60-70%인데, 온실 내부가 건조해지거나 다습해지면 작물의 생육에 문제가 생긴다. 또한 습도 분포가 고르지 않을 경우 시설 내에서 생산되는 작물의 품질에 차이가 생기는 문제가 생긴다. (중략)

  • PDF

Study on the Standardization of Environment Control System for Greenhouse (시설원예용 환경제어장치의 규격 표준화에 관한 연구)

  • 전종길;김경원;오병기
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1999.11a
    • /
    • pp.67-70
    • /
    • 1999
  • 일반적으로 시설원예용 환경제어장치란 온실 내부 환경을 작물생육에 적합한 환경으로 조성시키기 위하여 원예시설에 부착된 환기창이나 냉난방장치, $CO_2$발생기, 양액제어장치 등을 통해 온도, 습도, $CO_2$, EC, pH 등의 각종 환경을 인위적으로 조절해 주는 장치라고 할 수 있다. 이러한 장치는 수동스위치 조작에서부터 전자제어, 컴퓨터에 의한 복합환경제어에 이르기까지 매우 다양한 제품이 생산 판매되고 있지만, 상호 제품간 호환성이 없으며, 성능에도 차이가 나는 것을 볼 수 있다. (중략)

  • PDF

농업기술 - 여름철 강우와 고온에 대비한 시설채소 재배기술

  • Kim, Im-Gyeong
    • 농업기술회보
    • /
    • v.51 no.4
    • /
    • pp.26-27
    • /
    • 2014
  • 지구 온난화의 영향으로 여름철 시설하우스 내부온도는 $40{\sim}50^{\circ}C$이상 상승하는 반면 습도는 50~70%로 낮아진다. 우리나라는 여름철에 비가 집중되고 국지성 호우가 증가하는 추세로 6월부터 고온과 과습으로 인해 수정률이 낮아지고 생리장해가 증가되는 등 생산량과 품질이 저하돼 가격변동이 심한 편이다. 때문에, 여름철에도 안정적으로 시설채소를 생산하고 품질이 향상시키기 위한 환경조절 및 작물관리 기술을 소개한다.

  • PDF

The Study of Greenhouses Management System based on Android (안드로이드 기반의 비닐하우스 관리시스템 연구)

  • Ryu, Jin-Bo;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.741-742
    • /
    • 2016
  • IoT(Internet of Things) 기술이 급속도로 발전함에 따라 다양한 분야에 적용되고 있으며, 새로운 부가가치를 창출하고 있다. 최근에는 IoT 기술을 접목하여 도시 내부에 자동화된 농작물 재배시설을 설비하여 재배된 농작물을 직접 현지에 바로 공급할 수 있는 운영시스템을 구축하고 있다. 본 연구는 도심지 내부의 건물 옥상이나 농작물을 재배할 수 있는 임의의 공간에 온실을 설치하여 작물을 재배할 수 있는 환경을 원격으로 관리하는데 있다. 온실 내부의 환경 데이터를 계측하기 위한 온도, 습도, 조도, 토양상태, CO2 센스를 설치하여 온실 내부의 환경을 라즈베리파이2(raspberry Pi2)를 활용하여 계측하였다. 원격으로의 데이터 전송은 Wi-Fi를 이용하여 데이터를 전송하였으며, 중앙에서 관리된 관리정보를 통하여 온실 하우스의 내부 환경을 제어할 수 도록 모터(motor), 환풍기 팬, 조명용 Led, 워터 펌프 등을 제어하도록 하였다. 본 논문의 연구결과를 통하여 비닐하우스의 내부 상태를 계측하고, 다양한 구동장치를 제어할 수 있도록 IoT 기술을 편리하게 적용할 수 있는 라즈베리파이와 원격관리용 스마트 앱(app.)을 이용하여 비닐하우스 내부 관경을 편리하게 관리할 수 있음을 확인하였다.

  • PDF

A Study on Thermodynamics Specific Estimation of Inner Part of Tunnel Structure used FDS (FDS를 사용한 터널구조물 내부 열역학적 특성예측에 관한 연구)

  • Lee, Young-Jae;Ahn, Chan-Sole;Kim, Heung-Yeol;Kim, Hyung-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.540-547
    • /
    • 2009
  • 국내도로터널 화재안전성을 확보하기 위하여 FDS를 이용하여 ISO, 도로터널 방재시설기준, Runner Hammer 터널기준의 시나리오에 따라 콘크리트 터널구조물의 내부 열역학적 특성을 예측하였다. 화재로 인한 터널내부의 온도분포를 측정하기 위하여 화염원으로부터 터널입구 방향으로 5m 마다 터널 단면의 온도분포를 추출하였고, 터널의 중심을 지나는 길이방향 단면의 온도분포를 해석하였다. 해석결과 온도는 500${\sim}$950$^{\circ}C$까지의 분포를 나타내었고 가장 높은 온도영향을 받은 Runner Hammer 터널기준의 내부 열환경 조건에서는 터널 단면이 모두 화염에 직접적으로 노출 때문에 단면전체가 800${\sim}$950$^{\circ}C$까지 상승하였다. 특히 상부부분은 900$^{\circ}C$ 이상의 고온에 장시간 노출되고 있어 깊이 50mm 지점의 온도가 250$^{\circ}C$까지 상승하였다.

  • PDF