• Title/Summary/Keyword: 시뮬레이션 시험

Search Result 1,097, Processing Time 0.024 seconds

The Effect of Construction Methods on Geothermal Exchange Rates of Cast-in-place Energy Piles (현장타설말뚝형 에너지 파일의 시공형태별 지중 열교환량에 관한 연구)

  • Park, Yong-Boo;Nam, Yu-Jin;Sim, Young-Jong;Sohn, Jeong-Rak
    • Land and Housing Review
    • /
    • v.3 no.2
    • /
    • pp.169-175
    • /
    • 2012
  • In recent, there are many studies associated with energy piles to save initial construction cost for ground source heat pump system. In this study, to evaluate geothermal exchange rates two types (a connection type and a slinky type) of cast-in-place energy piles (PRD, 4.5m in depth, 1,200 mm in diameter) were constructed for the tests and their efficiencies were compared with numerical analysis results. As a result, starting with operation, geothermal exchange rate gradually decreases due to exchange of lower ground temperature. In the case of connection type, temperature difference is $0.37^{\circ}C$ in heating mode and $0.34^{\circ}C$, in cooling mode, respectively. In addition, in case of a connection type, geothermal exchange rate in heating mode is 2,314W/m and in cooling mode, 252.2W/m whose value is 9% higher than in heating mode. In the case of slinky type, the average geothermal exchange rate in heating mode is 168.0W/m, which is about 27% lower than that of connection type.

Conical Path Generation Technique for Ball Bar Measurement Using Simultaneous 5-Axis Motion Control (5 축 동시 구동을 통한 볼바 측정용 원추형 경로 생성 방법)

  • Lee, Dong-Mok;Lee, Jae-Chang;Yang, Seung-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.97-103
    • /
    • 2013
  • This study proposes a path generation technique for simultaneous five-axis driving for ball bar measurement, which is equivalent to cone frustum machining as mentioned in the NAS979 standard. The technique is generalized for a 3D circular path, and it is applicable to all machine tools regardless of their structural configurations. A mathematical machine input model that consists of a five-axis machine tool, ball-bar measurement and conical path information as inputs is presented for easy NC code generation, simulation for various test conditions, and a measurement test. The movement range of rotary axes, which depends on various conditions, is mathematically analyzed based on the proposed conical path model. Moreover, the effect of the movement range on various conditions (apex angle and inclination angle, ball bar tilting acceptance angle, offset position of workpiece ball, etc.) is analyzed.

Wavelet Transform Based Doconvolution of Ultrasonic Pulse-Echo Signal (웨이브렛 변환을 이용한 초음파 펄스 에코 신호의 디컨볼루션)

  • Jhang, Kyung-Young;Jang, Hyo-Seong;Park, Byung-Yll;Ha, Job
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.511-520
    • /
    • 2000
  • Ultrasonic pulse echo method comes to be difficult to apply to the multi-layered structure with very thin layer, because the echoes from the top and the bottom of the layer are superimposed. We can easily meet this problem when the silicon chip layer in the semiconductor is inspected by a SAM equipment using fairly low frequency lower than 20MHz by which severe attenuation in the epoxy mold compound of packaging material can be overcome. Conventionally, deconvolution technique has been used for the decomposition of superimposed UT signals, however it has disabilities when the waveform of the transmitted signal is distorted according to the propagation. In this paper, the wavelet transform based deconvolution(WTBD) technique is proposed as a new signal processing method that can decompose the superimposed echo signals with superior performances compared to the conventional deconvolution technique. WTBD method uses the wavelet transform in the pre-stage of deconvolution to extract out the common waveform from the transmitted and received signal with distortion. Performances of the proposed method we shown by through computer simulations using model signal with noise and we demonstrated by through experiments for the fabricated semiconductor sample with partial delamination at the top of silicon chip layer.

  • PDF

Fault Detection through the LASAR Component modeling of PLD Devices (PLD 소자의 LASAR 부품 모델링을 통한 고장 검출)

  • Pyo, Dae-in;Hong, Seung-beom
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.314-321
    • /
    • 2020
  • Logic automated stimulus and response (LASAR) software is an automatic test program development tool for logic function test and fault detection of avionics components digital circuit cards. LASAR software needs to the information for the logic circuit function and input and output of the device. If there is no component information, normal component modeling is impossible. In this paper, component modeling is carried out through reverse design of programmable logic device (PLD) device without element information. The developed LASAR program identified failure detection rates through fault simulation results and single-seated fault insertion methods. Fault detection rates have risen by 3% to 91% for existing limited modeling and 94% for modeling through the reverse design. Also, the 22 case of stuck fault with the I/O pin of EP310 PLD were detected 100% to confirm the good performance.

Road Condition Measurement using Radar Cross Section of Radar (레이더의 유효 반사전력을 이용한 도로 상태 측정)

  • Park, Jae-Hyoung;Lee, Jae-Kyun;Lee, Chae-Wook;Lee, Nam-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.150-156
    • /
    • 2011
  • Smart Highway is a next generation highway that significantly improves a traffic safety, reduces incidence of traffic accidents, and supports intelligent and convenient driving environments so that drivers can drive at high speeds in safety. In order to implement smart highway, it is required to gather a large amount of data including conditions of a road and the status of vehicles, and other useful data. To provide situation information of highway, it has been gathered traffic information using optical sensors(CCTV, etc.). However, this technique has problems such as the problem of information gathering, lack of accuracy depending on weather conditions and limitation of maintenance. It needs radar system which has not effect on environmental change and algorithm processing technique in order to provide information for a safety driving to driver and car. In this paper, it is used radar with 9.4GHz to test performance of a road surface and developed radar system for detecting test. And we compared and analyzed a performance of data acquired from each radar through computer simulation.

A Development of Simulator for Autonomous Navigation System of UUV (무인잠수정의 자율운항시스템을 위한 시뮬레이터 개발)

  • Lee, Young-Il;Min, Jong-Soo;Song, Jin-Kook;Kim, Yong-Gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.581-589
    • /
    • 2008
  • The goal of a simulator is to provide for the testing of new technologies and to facilitate the eventual transfer of these technologies to the applications. In the Development Step, Simulation can provide a cost effective alternative to expensive and hazardous field testing. In this paper, a 3D simulator is developed to test UUV navigation system bated on RVC model. The simulation system consists of a environment manager, objects and a 3D viewer. Objects are modeling all physical elements such as map, obstacle and UUV which reside in a underwater environment. Those objects are created and initialized by environment manager. The environment manager plays the role of intermediator which allows created objects to interact with each other, and transmits information on the objects to 3D viewer. The 3D viewer analyzes the received information and visualizes 3D graphic by using OpenGL primitives.

Design and Implementation of $\pi/4$ QPSK Satellite IP Modem Part ($\pi/4$ QPSK 위성 IP 모뎀부 설계 및 구현)

  • Kang, Jung-Mo;Jung, Jae-Wook;Kim, Myung-Sik;Oh, Woo-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1858-1865
    • /
    • 2007
  • In this paper, we introduce the design and implementation of satellite IP modem. The designed satellite IP modem shows the performance of 0.2% overhead, BER=10-5 when Eb/No=6dB, frequency offset of 8KHz, data rate up to 1536Kbps, $F_{if}=140MHz$. The designed system is verified through software simulation and then implemented with MPC86x communication processor, TMS320C6416 DSP, and Altera FPGA. Since each hardware unit is implemented in daughter board for modularity, we can reduce the development time and easily improve the performance with using better processor. Linux is used for embedded OS because it shows better performance in IP manipulation multitask processing, and hardware control through device driver. The implemented system is tested and verified with channel simulator. Since the proposed IP modem shows small size and light weight, that can be used anywhere with easy if you need IP environment.

A Design of LAS data processing board using PowerPC and VxWorks (PowerPC 및 VxWorks를 이용한 예인배열센서 데이터처리보드 개발)

  • Lim, Byeong-Seon;Kim, Young-Kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.371-374
    • /
    • 2009
  • This Paper deal with a design, making a prtotype and test methods of Real-time towed Line Array Sensor Data processing board for fast data communication and long range transmission with SFM(Serial FPDP Module) through Optic-fiber channel. The LAS A,B,C group Data from towed line array sensor which is installed in FFX(Fast Frigate eXperimental) of Korean Navy is packed a previously agreed protocol and transmitted to the Signal processing unit. Consider the limited space of VME 6U size, LAS Data processing board is designed with MPC8265 PowerPC Controller of Freescale for main system control and Altera's CycloneIII FPGA for sensor data packing, self-test simulation data generation, S/W FIFO et cetera. LAS Data processing board have VxWorks, the RTOS(Real Time Operating System) that present many device drivers, peripheral control libraries on board for real-time data processing.

  • PDF

A Study on the Bow Hull Form Design of Full Ship Considering the Nonlinear Waves (비선형파를 고려한 비대선의 선수선형설계에 관한 연구)

  • Yu, Jin-Won;Lee, Young-Gill;Choi, Si-Young;Choi, Young-Chan;Jeong, Kwang-Leol;Ha, Yoon-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.671-679
    • /
    • 2010
  • This paper introduces a new hull form design method for the bow of a full ship, by actively applying the relation between the fore-body hull form and its wave resistance characteristics. For the hull form design, the Series 60($C_B=0.8$) hull is chosen as the parent ship, and Kracht's charts are used to determine the parameters of the bulbous bow in the early stages of hull form design. Several hull forms have been tested in order to obtain enough hull form variations with various bow shapes and design parameters in the search of the best design. In order to investigate the resistance characteristics of the designed hull forms, numerical simulations with corresponding model tests have been rigorously performed. For the numerical simulations, the Marker-density method is employed to track the nonlinear phenomena of the free surface(program IUBW). Model tests have also been performed to achieve an improved research performance using the designed hulls. Both numerical and experimental results show that the wave resistance of the hull forms can be effectively diminished if the bows are designed using the method introduced in this research. It is also expected that this research can facilitate better productivity in hull form design, especially at the preliminary design stage of a full ship type vessel.

CFD Simulation on Predicting POW Performance Adopting Laminar-Turbulent Transient Model (층류-난류 천이 모델을 적용한 프로펠러 단독 성능 해석에 관한 CFD 시뮬레이션)

  • Kim, Dong-Hyun;Jeon, Gyu-Mok;Park, Jong-Chun;Shin, Myung-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • In the present study, the model-scale Propeller Open Water (POW) tests for the propeller of 176K bulk carrier and 8600TEU container ship were conducted through Computational Fluid Dynamics (CFD) simulation. In order to solve the incompressible viscous flow field, the Reynolds-averaged Navier-Stokes (RaNS) equations were employed as the governing equations. The γ-Reθ(gamma-Re-theta) transition model combined with the SST k-ωturbulence model was introduced to describe the laminar-turbulence transition considering the low Reynolds number of model-scale. Firstly, the flow simulation developing over a flat plate was performed to verify the transition modeling, in which the wall shear stresses were compared with experiments and other numerical results. Then, to investigate the effect of the model, the CFD simulation for the POW test was performed and the simulated propeller performance was validated through comparison with the experiment conducted at Korea Research Institute of Ships & Ocean Engineering (KRISO).