• Title/Summary/Keyword: 시뮬레이션 모듈

Search Result 879, Processing Time 0.028 seconds

A Study on the Risk Analysis and Fail-safe Verification of Autonomous Vehicles Using V2X Based on Intersection Scenarios (교차로 시나리오 기반 V2X를 활용한 자율주행차량의 위험성 분석 및 고장안전성 검증 연구)

  • Baek, Yunseok;Shin, Seong-Geun;Park, Jong-ki;Lee, Hyuck-Kee;Eom, Sung-wook;Cho, Seong-woo;Shin, Jae-kon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.299-312
    • /
    • 2021
  • Autonomous vehicles using V2X can drive safely information on areas outside the sensor coverage of autonomous vehicles conventional autonomous vehicles. As V2X technology has emerged as a key component of autonomous vehicles, research on V2X security is actively underway research on risk analysis due to failure of V2X communication is insufficient. In this paper, the service scenario and function of autonomous driving system V2X were derived by presenting the intersection scenario of the autonomous vehicle, the malfunction was defined by analyzing the hazard of V2X. he ISO26262 Part3 process was used to analyze the risk of malfunction of autonomous vehicle V2X. In addition, a fault injection scenario was presented to verify the fail-safe of the simulation-based intersection scenario.

Estimation of Onion Leaf Appearance by Beta Distribution (Beta 함수 기반 기온에 따른 양파의 잎 수 증가 예측)

  • Lee, Seong Eun;Moon, Kyung Hwan;Shin, Min Ji;Kim, Byeong Hyeok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.78-82
    • /
    • 2022
  • Phenology determines the timing of crop development, and the timing of phenological events is strongly influenced by the temperature during the growing season. In process-based model, leaf area is simulated dynamically by coupling of morphology and phenology module. Therefore, the prediction of leaf appearance rate and final leaf number affects the performance of whole crop model. The dataset for the model equation was collected from SPA R chambers with five different temperature treatments. Beta distribution function (proposed by Yan and Hunt (1999)) was used for describing the leaf appearance rate as a function of temperature. The optimum temperature and the critical value were estimated to be 26.0℃ and 35.3℃, respectively. For evaluation of the model, the accumulated number of onion leaves observed in a temperature gradient chamber was compared with model estimates. The model estimate is the result of accumulating the daily increase in the number of onion leaves obtained by inputting the daily mean temperature during the growing season into the temperature model. In this study, the coefficient of determination (R2) and RMSE value of the model were 0.95 and 0.89, respectively.

A study on process optimization of diffusion process for realization of high voltage power devices (고전압 전력반도체 소자 구현을 위한 확산 공정 최적화에 대한 연구)

  • Kim, Bong-Hwan;Kim, Duck-Youl;Lee, Haeng-Ja;Choi, Gyu-Cheol;Chang, Sang-Mok
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.227-231
    • /
    • 2022
  • The demand for high-voltage power devices is rising in various industries, but especially in the transportation industry due to autonomous driving and electric vehicles. IGBT module parts of 3.3 kV or more are used in the power propulsion control device of electric vehicles, and the procurement of these parts for new construction and maintenance is increasing every year. In addition, research to optimize high-voltage IGBT parts is urgently required to overcome their very high technology entry barrier. For the development of high-voltage IGBT devices over 3.3 kV, the resistivity range setting of the wafer and the optimal conditions for major unit processes are important variables. Among the manufacturing processes to secure the optimal junction depth, the optimization of the diffusion process, which is one step of the unit process, was examined. In the diffusion process, the type of gas injected, the injection time, and the injection temperature are the main variables. In this study, the range of wafer resistance (Ω cm) was set for the development of high voltage IGBT devices through unit process simulation. Additionally, the well drive in (WDR) condition optimization of the diffusion process according to temperature was studied. The junction depth was 7.4 to7.5 ㎛ for a ring pattern width of 23.5 to25.87 ㎛, which can be optimized for supporting 3.3 kV high voltage power devices.

Detecting Vehicles That Are Illegally Driving on Road Shoulders Using Faster R-CNN (Faster R-CNN을 이용한 갓길 차로 위반 차량 검출)

  • Go, MyungJin;Park, Minju;Yeo, Jiho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.105-122
    • /
    • 2022
  • According to the statistics about the fatal crashes that have occurred on the expressways for the last 5 years, those who died on the shoulders of the road has been as 3 times high as the others who died on the expressways. It suggests that the crashes on the shoulders of the road should be fatal, and that it would be important to prevent the traffic crashes by cracking down on the vehicles intruding the shoulders of the road. Therefore, this study proposed a method to detect a vehicle that violates the shoulder lane by using the Faster R-CNN. The vehicle was detected based on the Faster R-CNN, and an additional reading module was configured to determine whether there was a shoulder violation. For experiments and evaluations, GTAV, a simulation game that can reproduce situations similar to the real world, was used. 1,800 images of training data and 800 evaluation data were processed and generated, and the performance according to the change of the threshold value was measured in ZFNet and VGG16. As a result, the detection rate of ZFNet was 99.2% based on Threshold 0.8 and VGG16 93.9% based on Threshold 0.7, and the average detection speed for each model was 0.0468 seconds for ZFNet and 0.16 seconds for VGG16, so the detection rate of ZFNet was about 7% higher. The speed was also confirmed to be about 3.4 times faster. These results show that even in a relatively uncomplicated network, it is possible to detect a vehicle that violates the shoulder lane at a high speed without pre-processing the input image. It suggests that this algorithm can be used to detect violations of designated lanes if sufficient training datasets based on actual video data are obtained.

Evaluating the Efficacy of Commercial Polysulfone Hollow Fiber Membranes for Separating H2 from H2/CO Gas Mixtures (상용 폴리설폰 중공사막의 수소/일산화탄소 혼합가스 분리 성능 평가)

  • Do Hyoung Kang;Kwanho Jeong;Yudam Jeong;Seung Hyun Song;Seunghee Lee;Sang Yong Nam;Jae-Kyung Jang;Euntae Yang
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.352-361
    • /
    • 2023
  • Steam methane reforming is currently the most widely used technology for producing hydrogen, a clean fuel. Hydrogen produced by steam methane reforming contains impurities such as carbon monoxide, and it is essential to undergo an appropriate post-purification step for commercial usage, such as fuel cells. Recently, membrane separation technology has been gaining great attention as an effective purification method; in this study, we evaluated the feasibility of using commercial polysulfone membranes for biogas upgrading to separate and recover hydrogen from a hydrogen/carbon monoxide gas mixture. Initially, we examined the physicochemical properties of the commercial membrane used. We then conducted performance evaluations of the commercial membrane module under various conditions using mixed gas, considering factors such as stage-cut and operating pressure. Finally, based on the evaluation results, we carried out simulations for process design. The maximum H2 permeability and H2/CO separation factor for the commercial membrane process were recorded at 361 GPU and 20.6, respectively. Additionally, the CO removal efficiency reached up to 94%, and the produced hydrogen concentration achieved a maximum of 99.1%.

A Study on Precision of 3D Spatial Model of a Highly Dense Urban Area based on Drone Images (드론영상 기반 고밀 도심지의 3차원 공간모형의 정밀도에 관한 연구)

  • Choi, Yeon Woo;Yoon, Hye Won;Choo, Mi Jin;Yoon, Dong Keun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.69-77
    • /
    • 2022
  • The 3D spatial model is an analysis framework for solving urban problems and is used in various fields such as urban planning, environment, land and housing management, and disaster simulation. The utilization of drones that can capture 3D images in a short time at a low cost is increasing for the construction of 3D spatial model. In terms of building a virtual city and utilizing simulation modules, high location accuracy of aerial survey and precision of 3D spatial model function as important factors, so a method to increase the accuracy has been proposed. This study analyzed location accuracy of aerial survey and precision of 3D spatial model by each condition of aerial survey for urban areas where buildings are densely located. We selected Daerim 2-dong, Yeongdeungpo-gu, Seoul as a target area and applied shooting angle, shooting altitude, and overlap rate as conditions for the aerial survey. In this study, we calculated the location accuracy of aerial survey by analyzing the difference between an actual survey value of CPs and a predicted value of 3D spatial Model. Also, We calculated the precision of 3D spatial Model by analyzing the difference between the position of Point cloud and the 3D spatial Model (3D Mesh). As a result of this study, the location accuracy tended to be high at a relatively high rate of overlap, but the higher the rate of overlap, the lower the precision of 3D spatial model and the higher the shooting angle, the higher precision. Also, there was no significant relationship with precision. In terms of baseline-height ratio, the precision tended to be improved as the baseline-height ratio increased.

Enhanced Transport and Risk of a Highly Nonpolar Pollutant in the Presence of LNAPL in Soil-groundwater System: In Case of p-xylene and benz[a]anthracene (LNAPL에 의한 소수성 유기오염물질의 지하환경 내 이동성 변화가 위해성 증가에 미치는 영향: p-xylene과 benz[a]anthracene의 경우)

  • Ryu, Hye-Rim;Han, Joon-Kyoung;Kim, Young-Jin;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.25-31
    • /
    • 2007
  • Characterizing the risk posed by a mixture of chemicals is a challenging task due to the chemical interactions of individual components that may affect their physical behavior and hence alter their exposure to receptors. In this study, cell tests that represent subsurface environment were carried out using benz[a]anthracene (BaA) and p-xylene focusing on phasetransforming interaction to verify increased mobility and risk of highly sorbed pollutants in the presence of less sorbed, mobile liquid pollutants. A transport model was also developed to interpret results and to simulate the same process on a field scale. The experimental results showed that BaA had far greater mobility in the presence of p-xylene than in the absence of that. The main transport mechanisms in the vadose zone were by dissolution to p-xylene or water. The transport model utilizing Defined Time Steps (DTS) was developed and tested with the experimental results. The predicted and observed values showed similar tendency, but the more work is needed in the future study for more precise modeling. The field-scale simulation results showed that transport of BaA to groundwater table was significantly faster in the presence of NAPL, and the oral carcinogenic risk of BaA calculated with the concentration in groundwater was 15${\sim}$87 times larger when mixed with NAPL than when solely contaminated. Since transport rate of PAHs is very slow in the subsurface without NAPL and no degradation of PAHs was considered in this simulation during the transport, the increase of risk in the presence of NAPL is expected to be greater for the actual contaminated site.

Improvement in facies discrimination using multiple seismic attributes for permeability modelling of the Athabasca Oil Sands, Canada (캐나다 Athabasca 오일샌드의 투수도 모델링을 위한 다양한 탄성파 속성들을 이용한 상 구분 향상)

  • Kashihara, Koji;Tsuji, Takashi
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.80-87
    • /
    • 2010
  • This study was conducted to develop a reservoir modelling workflow to reproduce the heterogeneous distribution of effective permeability that impacts on the performance of SAGD (Steam Assisted Gravity Drainage), the in-situ bitumen recovery technique in the Athabasca Oil Sands. Lithologic facies distribution is the main cause of the heterogeneity in bitumen reservoirs in the study area. The target formation consists of sand with mudstone facies in a fluvial-to-estuary channel system, where the mudstone interrupts fluid flow and reduces effective permeability. In this study, the lithologic facies is classified into three classes having different characteristics of effective permeability, depending on the shapes of mudstones. The reservoir modelling workflow of this study consists of two main modules; facies modelling and permeability modelling. The facies modelling provides an identification of the three lithologic facies, using a stochastic approach, which mainly control the effective permeability. The permeability modelling populates mudstone volume fraction first, then transforms it into effective permeability. A series of flow simulations applied to mini-models of the lithologic facies obtains the transformation functions of the mudstone volume fraction into the effective permeability. Seismic data contribute to the facies modelling via providing prior probability of facies, which is incorporated in the facies models by geostatistical techniques. In particular, this study employs a probabilistic neural network utilising multiple seismic attributes in facies prediction that improves the prior probability of facies. The result of using the improved prior probability in facies modelling is compared to the conventional method using a single seismic attribute to demonstrate the improvement in the facies discrimination. Using P-wave velocity in combination with density in the multiple seismic attributes is the essence of the improved facies discrimination. This paper also discusses sand matrix porosity that makes P-wave velocity differ between the different facies in the study area, where the sand matrix porosity is uniquely evaluated using log-derived porosity, P-wave velocity and photographically-predicted mudstone volume.

A Study on the Interactive Narrative - Focusing on the analysis of VR animation <Wolves in the Walls> (인터랙티브 내러티브에 관한 연구 - VR 애니메이션 <Wolves in the Walls>의 분석을 중심으로)

  • Zhuang Sheng
    • Trans-
    • /
    • v.15
    • /
    • pp.25-56
    • /
    • 2023
  • VR is a dynamic image simulation technology with very high information density. Among them, spatial depth, temporality, and realism bring an unprecedented sense of immersion to the experience. However, due to its high information density, the information contained in it is very easy to be manipulated, creating an illusion of objectivity. Users need guidance to help them interpret the high density of dynamic image information. Just like setting up navigation interfaces and interactivity in games, interactivity in virtual reality is a way to interpret virtual content. At present, domestic research on VR content is mainly focused on technology exploration and visual aesthetic experience. However, there is still a lack of research on interactive storytelling design, which is an important part of VR content creation. In order to explore a better interactive storytelling model in virtual reality content, this paper analyzes the interactive storytelling features of the VR animated version of <Wolves in the walls> through the methods of literature review and case study. We find that the following rules can be followed when creating VR content: 1. the VR environment should fully utilize the advantages of free movement for users, and users should not be viewed as mere observers. The user's sense of presence should be fully considered when designing interaction modules. Break down the "fourth wall" to encourage audience interaction in the virtual reality environment, and make the hot media of VR "cool". 2.Provide developer-driven narrative in the early stages of the work so that users are not confused about the ambiguous world situation when they first enter a virtual environment with a high degree of freedom. 1.Unlike some games that guide users through text, you can guide them through a more natural interactive approach that adds natural dialog between the user and story characters (NPC). Also, since gaze guidance is an important part of story progression, you should set up spatial scene user gaze guidance elements within it. For example, you can provide eye-following cues, motion cues, language cues, and more. By analyzing the interactive storytelling features and innovations of the VR animation <Wolves in the walls>, I hope to summarize the main elements of interactive storytelling from its content. Based on this, I hope to explore how to better showcase interactive storytelling in virtual reality content and provide thoughts on future VR content creation.