DOI QR코드

DOI QR Code

Estimation of Onion Leaf Appearance by Beta Distribution

Beta 함수 기반 기온에 따른 양파의 잎 수 증가 예측

  • Lee, Seong Eun (Research Institute of Climate Change and Agriculture, NIHHS, RDA) ;
  • Moon, Kyung Hwan (Research Institute of Climate Change and Agriculture, NIHHS, RDA) ;
  • Shin, Min Ji (Research Institute of Climate Change and Agriculture, NIHHS, RDA) ;
  • Kim, Byeong Hyeok (Research Institute of Climate Change and Agriculture, NIHHS, RDA)
  • 이성은 (국립원예특작과학원 온난화대응농업연구소) ;
  • 문경환 (국립원예특작과학원 온난화대응농업연구소) ;
  • 신민지 (국립원예특작과학원 온난화대응농업연구소) ;
  • 김병혁 (국립원예특작과학원 온난화대응농업연구소)
  • Received : 2022.04.25
  • Accepted : 2022.06.24
  • Published : 2022.06.30

Abstract

Phenology determines the timing of crop development, and the timing of phenological events is strongly influenced by the temperature during the growing season. In process-based model, leaf area is simulated dynamically by coupling of morphology and phenology module. Therefore, the prediction of leaf appearance rate and final leaf number affects the performance of whole crop model. The dataset for the model equation was collected from SPA R chambers with five different temperature treatments. Beta distribution function (proposed by Yan and Hunt (1999)) was used for describing the leaf appearance rate as a function of temperature. The optimum temperature and the critical value were estimated to be 26.0℃ and 35.3℃, respectively. For evaluation of the model, the accumulated number of onion leaves observed in a temperature gradient chamber was compared with model estimates. The model estimate is the result of accumulating the daily increase in the number of onion leaves obtained by inputting the daily mean temperature during the growing season into the temperature model. In this study, the coefficient of determination (R2) and RMSE value of the model were 0.95 and 0.89, respectively.

생물계절은 작물의 발달 시기를 결정하며, 생육기 온도에 의해 크게 영향을 받는다. 과정 기반 모델(PBM)에서 엽면적은 생물계절 및 형태 모듈의 결합에 의해 동적으로 시뮬레이션된다. 따라서 잎 발달 속도 또는 최종 잎 수의 예측은 전체 작물 모델의 성능에 영향을 주게 된다. 기온에 따른 잎 축적 속도 결정을 위한 데이터는 SPAR 챔버로부터 수집되었다. 온도의 함수로서 발달 속도를 설명하기 위해 베타 분포 함수(Yan and Hunt(1999)에 의해 제안됨)가 사용되었으며, 최적온도와 임계온도는 각각 26.0℃와 35.3℃로 추정되었다. 모델 추정치는 기온 모델에 생장기의 일 평균 기온을 입력하여 얻은 양파 잎의 일별 증가량을 누적한 결과이며, 모델 평가를 위해 온도구배하우스에서 관찰된 양파 잎의 누적 개수를 모델 추정치와 비교하였다. 본 연구에서 잎 수 추정 모델의 결정계수(R2)와 RMSE 값은 각각 0.95와 0.89였다.

Keywords

Acknowledgement

This work was carried out with the support of "Cooperative Research Program for Agricultural Science and Technology Development (Project No. PJ01512101)" Rural Development Administration, Republic of Korea.

References

  1. Ballesteros, R., J. F. Ortega, D. Hernandez, and M. A. Moreno, 2014: Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part II: application to maize and onion crops of a semi-arid region in Spain. Precision Agriculture 15, 593-614. DOI: 10.1007/s11119-014-9357-6.
  2. Brewster, J. L., 1979: The response of growth rate to temperature in seedlings of several Allium crop species. Annals of Applied Biology 93(3), 351-357. DOI: 10.1111/j.1744-7348.1979.tb06551.x.
  3. Chope, G. A., K. Cools, L. A. Terry, J. P. Hammond, and A. J. Thompson, 2012: Association of gene expression data with dormancy and sprout suppression in onion bulbs using a newly developd onion microarray. Acta Horticulturae 969, 169-174. DOI: 10.17660/ActaHortic.2012.969. 22.
  4. Hsiao, J., K. D. Yun, K. H. Moon, and S. H. Kim, 2019: A process-based model for leaf development and growth in hardneck garlic (Allium sativum). Annals of Botany 124(7), 1143-1160. DOI: 10.1093/aob/mcz060.
  5. Ikeda, H., T. Kinoshita, T. Yamamoto, and A. Yamasaki, 2019: Sowing time and temperature influence bulb development in spring-sown onion (Allium cepa L.). Scientia Horticulturae 244, 242-248. DOI: 10.1016/j.scienta.2018.09.050.
  6. Kalbarczyk, R., and E. Kalbarczyk, 2014: The relation between adverse thermal soil conditions and variability of yield of onions (Allium cepa L.) in arable farmland in Poland. Bulgarian Journal of Agricultural Science 20(5), 1211-1220.
  7. Kim, S. H., and J. Hsiao, and H. Kinmonth-Schultz, 2019: Advances and improvements in modeling plant processes. Advances in crop modelling for a sustainable agriculture (edited by Kenneth Boote) pp.1-41.
  8. MAFRA, 2020: Agriculture, Food And Rural Affairs Statistics Yearbook. Ministry Of Agriculture, Food And Rural Affairs, 108pp.
  9. Tesfay, S. Z., I. Bertling, A. O. Odindo, P. L. Greenfield, and T. S. Workneh, 2011: Growth responses of tropical onion cultivars to photoperiod and temperature based on growing degree days. African Journal of Biotechnology 10(71), 15875-15882. DOI: 10.5897/AJB11.983.
  10. Yan, W., L. A. Hunt, 1999: An equation for modelling the temperature response of plants using only the cardinal temperatures. Annals of Botany 84, 607-614. DOI: 10.1016/j.compag.2008.03.006.
  11. Yin, X., M. J. Kropff, G. McLaren, and R. M. Visperas, 1995: A nonlinear model for crop development as a function of temperature. Agricultural and Forest Meteorology 77, 1-16. DOI: 10.1016/0168-1923(95)02236-Q.