• Title/Summary/Keyword: 시간도메인 ADC

Search Result 7, Processing Time 0.019 seconds

A Time-Domain Comparator for Micro-Powered Successive Approximation ADC (마이크로 전력의 축차근사형 아날로그-디지털 변환기를 위한 시간 도메인 비교기)

  • Eo, Ji-Hun;Kim, Sang-Hun;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1250-1259
    • /
    • 2012
  • In this paper, a time-domain comparator is proposed for a successive approximation (SA) analog-to-digital converter (ADC) with a low power and high resolution. The proposed time-domain comparator consists of a voltage-controlled delay converter with a clock feed-through compensation circuit, a time amplifier, and binary phase detector. It has a small input capacitance and compensates the clock feed-through noise. To analyze the performance of the proposed time-domain comparator, two 1V 10-bit 200-kS/s SA ADCs with a different time-domain comparator are implemented by using 0.18-${\mu}m$ 1-poly 6-metal CMOS process. The measured SNDR of the implemented SA ADC is 56.27 dB for the analog input signal of 11.1 kHz, and the clock feed-through compensation circuit and time amplifier of the proposed time-domain comparator enhance the SNDR of about 6 dB. The power consumption and area of the implemented SA ADC are 10.39 ${\mu}W$ and 0.126 mm2, respectively.

A 10-bit 10-MS/s 0.18-um CMOS Asynchronous SAR ADC with Time-domain Comparator (시간-도메인 비교기를 이용하는 10-bit 10-MS/s 0.18-um CMOS 비동기 축차근사형 아날로그-디지털 변환기)

  • Jeong, Yeon-Hom;Jang, Young-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.88-90
    • /
    • 2012
  • This paper describes a 10-bit 10-MS/s asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) with a rail-to-rail input range. The proposed SAR ADC consists of a capacitor digital-analog converter (DAC), a SAR logic and a comparator. To reduce the frequency of an external clock, the internal clock which is asynchronously generated by the SAR logic and the comparator is used. The time-domain comparator with a offset calibration technique is used to achieve a high resolution. To reduce the power consumption and area, a split capacitor-based differential DAC is used. The designed asynchronous SAR ADC is fabricated by using a 0.18 um CMOS process, and the active area is $420{\times}140{\mu}m^2$. It consumes the power of 0.818 mW with a 1.8 V supply and the FoM is 91.8 fJ/conversion-step.

  • PDF

A 10-bit 10-MS/s 0.18-㎛ CMOS Asynchronous SAR ADC with split-capacitor based differential DAC (분할-커패시터 기반의 차동 디지털-아날로그 변환기를 가진 10-bit 10-MS/s 0.18-㎛ CMOS 비동기 축차근사형 아날로그-디지털 변환기)

  • Jeong, Yeon-Ho;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.414-422
    • /
    • 2013
  • This paper describes a 10-bit 10-MS/s asynchronous successive approximation register (SAR) analog-to-digital converter (ADC) using a split-capacitor-based differential digital-to-analog converter (DAC). SAR logic and comparator are asynchronously operated to increase the sampling frequency. The time-domain comparator with an offset calibration technique is used to achieve a high resolution. The proposed 10-bit 10-MS/s asynchronous SAR ADC with the area of $140{\times}420{\mu}m^2$ is fabricated using a 0.18-${\mu}m$ CMOS process. Its power consumption is 1.19 mW at 1.8 V supply. The measured SNDR is 49.95 dB for the analog input frequency of 101 kHz. The DNL and INL are +0.57/-0.67 and +1.73/-1.58, respectively.

A 332 TOPS/W Input/Weight-Parallel Computing-in-Memory Processor with Voltage-Capacitance-Ratio Cell and Time-Based ADC (전압-커패시턴스 비율 셀과 시간 기반 ADC 를 이용한 332 TOPS/W 입력/가중치 병렬 메모리 내 연산 프로세서)

  • Jeonggyu So;Seongyon Hong;Hoi-Jun Yoo
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.4
    • /
    • pp.33-40
    • /
    • 2024
  • Recent advancements in computing-in-memory (CIM) have enabled substantial energy efficiency by leveraging charge-domain operations and multi-bit input mechanisms. However, earlier designs still suffer from elevated power consumption and often compromise computation signal-to-noise ratio (SNR) to enhance energy efficiency. In this study, we introduce a CIM processor optimized for energy efficiency and accuracy in multi-bit input/weight-parallel operations, featuring four main innovations: (1) a 10T2C sign-magnitude cell that utilizes voltage-capacitance-ratio (VCR) decoding for 5-bit analog inputs with only two supply voltage levels, (2) a charge reuse technique for the computation word line (CWL) to lower input driver power requirements, (3) a signal-amplifying noise-canceling voltage-to-time converter (SANC-VTC) to boost SNR, and (4) a distribution-aware time-to-digital converter (DA-TDC) aimed at reducing ADC power consumption. The proposed CIM processor, implemented in 28 nm CMOS technology with a 1.25 mm2 footprint, achieves a power consumption of 4.44 mW and an energy efficiency of 332 TOPS/W, reaching a benchmark accuracy of 72.43% (tested on ImageNet with ResNet50, 5-bit input/5-bit weight).

Asynchronous IR-UWB ranging system (비동기 IR-UWB 레인징 시스템)

  • Choi, You-Shin;Yang, Hoon-Gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.587-594
    • /
    • 2010
  • In this paper, we propose an asynchronous IR-UWB ranging system based on the two-way ranging protocol. The periodic pulse sequence is used to measure a distance between two devices. At the receiver, a received signal is first transformed into a frequency-domain signal using an analog correlator bank and digital signal processing is followed in the frequency-domain. This make it possible for the system to use an ADC with a conversion speed of pulse rate. The proposed algorithm at the receiver side includes a peak detection procedure using mutipath channel compensation and matched filtering, and retransmits a pulse sequence synchronized with the detected peak. The validity of the proposed algorithm is verified from simulation results where the CM1 channel is assumed.

A 2.5V 0.25㎛ CMOS Temperature Sensor with 4-bit SA ADC (4-비트 축차근사형 아날로그-디지털 변환기를 내장한 2.5V 0.25㎛ CMOS 온도 센서)

  • Kim, Mungyu;Jang, Young-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.378-384
    • /
    • 2013
  • In this paper, a CMOS temperature sensor is proposed to measure the internal temperature of a chip. The temperature sensor consists of a proportional-to-absolute-temperature (PTAT) circuit for a temperature sensing part and a 4-bit analog-to-digital converter (ADC) for a digital interface. The PTAT circuit with the compact area is designed by using a vertical PNP architecture in the CMOS process. To reduce sensitivity of temperature variation in the digital interface circuit of the proposed temperature sensor, a 4-bit successive approximation (SA) ADC using the minimum analog circuits is used. It uses a capacitor-based digital-to-analog converter and a time-domain comparator to minimize power consumption. The proposed temperature sensor was fabricated by using a $0.25{\mu}m$ 1-poly 6-metal CMOS process with a 2.5V supply, and its operating temperature range is from 50 to $150^{\circ}C$. The area and power consumption of the fabricated temperature sensor are $130{\times}390{\mu}m^2$ and $868{\mu}W$, respectively.

A Dual Charge Pump PLL-based Clock Generator with Power Down Schemes for Low Power Systems (저 전력 시스템을 위한 파워다운 구조를 가지는 이중 전하 펌프 PLL 기반 클록 발생기)

  • Ha, Jong-Chan;Hwang, Tae-Jin;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.11
    • /
    • pp.9-16
    • /
    • 2005
  • This paper proposes a programmable PLL (phase locked loop) based clock generator supporting a wide-range-frequency input and output for high performance and low power SoC with multiple clock frequencies domains. The propose system reduces the locking time and obtains a wide range operation frequency by using a dual-charge pumps scheme. For low power operation of a chip, the locking processing circuits of the proposed PLL doesn't be working in the standby mode but the locking data are retained by the DAC. Also, a tracking ADC is designed for the fast relocking operation after stand-by mode exit. The programmable output frequency selection's circuit are designed for supporting a optimized DFS operation according to job tasks. The proposed PLL-based clock system has a relock time range of $0.85{\mu}sec{\sim}1.3{\mu}sec$($24\~26$cycle) with 2.3V power supply, which is fabricated on $0.35{\mu}m$ CMOS Process. At power-down mode, PLL power saves more than $95\%$ of locking mode. Also, the PLL using programmable divider has a wide locking range ($81MHz\~556MHz$) for various clock domains on a multiple IPs system.