• Title/Summary/Keyword: 스펙트럴 요소법

Search Result 44, Processing Time 0.024 seconds

Application of Spectral Element Method for the Vibration Analysis of Passive Constrained Layer Damping Beams (수동감쇠 적층보의 진동해석을 위한 스펙트럴요소법의 적용)

  • Song, Jee-Hun;Hong, Suk-Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • This paper introduces a spectrally formulated element method (SEM) for the beams treated with passive constrained layer damping (PCLD). The viscoelastic core of the beams has a complex modulus that varies with frequency. The SEM is formulated in the frequency domain using dynamic shape functions based on the exact displacement solutions from progressive wave methods, which implicitly account for the frequency-dependent complex modulus of the viscoelastic core. The frequency response function and dynamic responses obtained by the SEM and the conventional finite element method (CFEM) are compared to evaluate the validity and accuracy of the present spectral PCLD beam element model. The spectral PCLD beam element model is found to provide very reliable results when compared with the conventional finite element model.

Dynamic Analysis of the Structures Subject to Distributed Loads by Using Spectral Element Method (스펙트럴요소법을 이용한 분포하중을 받는 구조물의 동적 거동 해석)

  • 홍종원;이준근;이우식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.56-60
    • /
    • 1995
  • 본 연구에서는 기존의 연구에서 다룬바 없는 분포하중의 경우에 대해 스펙트럴요소법을 적용하기 위해 1) 힘과 변위와의 관계를 이용하여 Bernoulli-Euler보와 1차원 Timoshenko-Mindlin평판에 대한 스펙트럴요소를 유도하고 2) 스펙트럴 요소법을 이용하여 분포하중을 받는 이들 구조물의 동적거동을 해석하고자 한다.

  • PDF

Vibration Analysis of the Pipeline with Internal Unsteady Fluid Flow by Using Spectral Element Method (스펙트럴요소법을 이용한 내부 비정상류를 갖는 파이프에 대한 진동해석)

  • Seo, Bo-Sung;Cho, Joo-Yong;Lee, U-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.387-393
    • /
    • 2006
  • In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid flow. The spectral element matrix is formulated by using the exact frequency-domain solutions of the pipe-dynamics equations. The spectral element dynamic analysis is then conducted to evaluate the accuracy of the present spectral element model and to investigate the vibration characteristics and internal fluid characteristics of an example pipeline system.

Spectral Element Modeling for the Axially Moving Strings (축방향으로 이동하는 현에 대한 스펙트럴 요소 모델링)

  • Choi, Jung-Sik;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1092-1096
    • /
    • 2009
  • The spectral element modeling is known to provide very accurate structural dynamic characteristics, while reducing the number of degree-of-freedom to resolve the computational and cost problems. Thus, the spectral element model with variational method for an axially moving string subjected to axial tension is developed in the present paper. The high accuracy of the spectral element model is the verified by comparing its solutions with the conventional finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension the vibration characteristics, wave characteristics, and the static and dynamic stabilities of a moving string are investigated.

  • PDF

Analysis of Simply Supported Rectangular Plate Using Spectral Finite Element Method (스펙트럴유한요소법을 이용한 네 변이 단순지지 된 직사각형평판의 진동해석)

  • Jo, Kyung-Lim;Hong, Suk-Yoon;Song, Ji-Hun;Kim, Dong-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.85-89
    • /
    • 2005
  • For the analysis of a vibrating two dimensional structure such as the simply supported rectangular plate, Spectral Finite Element Method (SFEM) has been studied. Under the condition that two parallel edges are simply supported at least and the other two edges can be arbitrary, Spectral Finite Element has been developed. Using this element SFEM is applied to the vibrating rectangular plate which all edges are simply supported, and obtain the frequency response function in frequency domain and the dynamic response in time domain. To evaluate these results normal mode method and finite element method (FEM) are also accomplished and compared. It is seen that SFEM is more powerful analysis tool than FEM in high frequency range.

  • PDF

A Numerical Method for Wave Reflection and Transmission Due to Local Non-Uniformities in Waveguides at High Frequencies (국부적 불연속을 가진 도파관의 고주파수 대역 파동 반사 및 투과 해석 기법)

  • Ryue, Jung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.314-324
    • /
    • 2010
  • In waveguide structures, waves may be partially reflected by local non-uniformities. The effects of local non-uniformities has been previously investigated by means of a combined spectral element and finite element (SE/FE) method at relatively low frequencies. However, since the SE is formulated based on a beam theory, the SE/FE method is not appropriated for analysis at higher frequencies where complex deformation of the waveguide occurs. So it is necessary to extend this approach for high frequencies. For the wave propagation at higher frequencies, a combined spectral super element and finite element (SSE/FE) method is introduced in this paper. As an example of the application of this method, wave reflection and transmission due to a local defect in a rail are simulated at frequencies between 20kHz and 30kHz. Also numerical errors are evaluated by means of the conservation of the incident power.

Explicit Transient Simulation of SH-waves Using a Spectral Element Method (스펙트럴 요소법을 이용한 SH파 전파의 외연적 시간이력해석)

  • Youn, Seungwook;Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.87-95
    • /
    • 2018
  • This paper introduces a new explicit spectral element method for the simulation of SH-waves in semi-infinite domains. To simulate the wave motion in unbounded domains, it is necessary to reduce the infinite extent to a finite computational domain of interest. To prevent the wave reflection from the trunctated boundaries, perfectly matched layer(PML) wave-absorbing boundary is introduced. The forward problem for simulating SH-waves in PML-truncated domains can be formulated as second-order PDEs. The second-order semi-discrete form of the governing PDEs is constructed by using a mixed spectral elements with Legendre-gauss-Lobatto quadrature method, which results in a diagonalized mass matrix. Then the second-order semi-discrete form is transformed to a first-order, whose solutions are calculated by the fourth-order Runge-Kutta method. Numerical examples showed that solutions of SH-wave in the two-dimensional analysis domain resulted in stable and accurate, and reflections from truncated boundaries could be reduced by using PML boundaries. Elastic wave propagation analysis using explicit time integration method may be apt for solving larger domain problems such as three-dimensional elastic wave problem more efficiently.

Numerical Simulation of Incipient Breaking Waves (초기 쇄파의 수치모사)

  • 김용직;김선기
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.4
    • /
    • pp.1-10
    • /
    • 2002
  • For the time-domain simulation of incipient breaking waves, usually the boundary integral method has been used so far, and it seems to be successful except a problem of too much computation time. The present paper shows a new computation technique for the simulation of breaking wave experiment. This technique uses the high-order spectral/boundary element method and the boundary integral method in sequence, and reduces the computation time remarkably. The wave generation and energy focusing process is efficiently simulated by the high-order spectral/boundary element method. Only the wave over-turning process is simulated by the boundary integral method. In the example calculation result, salient features of breaking waves such as high particle velocities and accelerations are shown.

Time-Domain Simulation of Nonlinear Free-Surface Flows around a Two-Dimensional Hydrofoil (2차원 수중익주위 비선형 자유표면유동의 시간영역 시뮬레이션)

  • Yong-J. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.2
    • /
    • pp.45-56
    • /
    • 1994
  • A computationally efficient numerical method based on potential flow is developed for time-domain simulation of the nonlinear free-surface flows around a 2-dimensional hydrofoil. This numerical method, namely, spectral/boundary-element method, is a mixed one of the high-order spectral method and the boundary-element method in time-domain. The high-order spectral method is used to calculate the nonlinear evolution of free-surface, and the boundary-element method is used to calculate the effects of the hydrofoil and the shed vortex. As application examples, nonlinear free-surface flows around a 2-dimensional hydrofoil which starts from the rest and translates near the free-surface with or without harmonic oscillations are calculated. Nonlinear/unsteady results of free-surface waves and hydrodynamic farces are shown and discussed. Particularly, the results of steady-state which are obtained as a special case of the present unsteady solution are compared with others' calculated and experimental results, and good agreements are observed.

  • PDF

Spectral Element Analysis of the Pipeline Conveying Internal Flow (스펙트럴요소법을 이용한 내부유동 포함된 파이프 진도해석)

  • 강관호;이우식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.207-212
    • /
    • 2001
  • This paper considers a pipeline conveying one-dimensional unsteady flow inside. The dynamics of the fluid-pipe system is represented by two coupled equations of motion for the transverse and axial displacements, which are linearized from a set of partial differential equations which consists of the axial and transverse equations of motion of the pipeline and the equations of momentum and continuity of the internal flow. Because of the complex nature of fluid-pipe interactive mechanism, a very accurate solution method is required to get sufficiently accurate dynamic characteristics of the pipeline. In the literatures, the finite element models have been popularly used for the problems. However, it has been well recognized that finite element method (FEM) may provide poor solutions especially at high frequency. Thus, in this paper, a spectral element model is developed for the pipeline and its accuracy is evaluated by comparing with the solutions by FEM.

  • PDF