• Title/Summary/Keyword: 쉘

Search Result 847, Processing Time 0.024 seconds

A Elastic Analysis for the Impact Response Analysis of Two-Layered Cylindrical Shells (2층 원통쉘의 탄성 충격응답 해석)

  • Park, Sung Jin;MIKAMI, Takashi
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.639-648
    • /
    • 2000
  • A model analysis is used to predict the impact response of a simply supported elastic circular cylindrical shell composed of two bonded isotropic layers. The governing equations for a two-layered cylindrical shell are derived on the basis of an improved theory for the single-layer shell which includes the effects of transverse shear deformation and rotary inertia. Calculations are made for the specific case of the steel-concrete cylindrical shell subjected to a suddenly applied load. The solutions show that the method yields very good results. Therefore the proposed method is useful not only for a better investigating of the response characteristics of the shell but also available for a check on other numerical methods such a FEM.

  • PDF

An Improved Degenerated Shell Element for Analysis of Laminated Composite Structures (복합적층구조 해석을 위한 개선된 쉘요소)

  • Choi, Chang Koon;Yoo, Seung Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.1-10
    • /
    • 1991
  • The paper is concerned with the analysis of laminated composite shell structures using an improved degenerated shell element. In the formulation of the element stiffness, the combined use of three different techniques was made. They are; 1) an enhanced interpolation of transverse shear strains in the natural coordinate system to overcome the shear locking problem; 2) the reduced integration technique in in-plane strains to avoid the membrane locking behavior; and 3) selective addition of the nonconforming displacement modes to improve the element performances. This element is free of serious shear/membrane locking problems and undesirable compatible/commutable spurious kinematic deformation modes. An incremental total Lagrangian formulation is presented which allows the calculation of arbitrarily large displacements. The resulting non-linear equilibrium equations are solved by the Newton-Raphson method. The versatility and accuracy of this improved degenerated shell element are demonstrated by solving several numerical examples.

  • PDF

Curved quadratic triangular degenerated-shell elements for geometric non-linear analysis (기하학적 비선형 해석을 위한 곡면 2차 삼각형 쉘 요소에 관한 연구)

  • Kim, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.46-53
    • /
    • 2005
  • Compare to the large number of curved quadrilateral degenerated-shell elements, there are only a very few curved triangular degenerated-shell elements. Based on the assumed natural strain sampling scheme previously developed for a quadratic degenerated-shell element for linear analysis, this paper devises geometric non-linear six-node degenerated-shell element. The element can be curved and is only equipped with the standard nodal d.o.f.'s. Careful consideration has been exercised to circumvent various locking phenomena that plague degenerated-shell element. Numerical examples are presented to illustrate efficiency.

Free Vibration of a Thin Circular Cylindrical Shell in Fluid (유체중의 얇은 원통쉘의 자유진동)

  • Liang, G.H.;Kawatate, K.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.3
    • /
    • pp.117-125
    • /
    • 1991
  • Two methods are presented to calculate the natural frequency of an elastic thin circular cylindrical shell vibrating in fluid. Both of them give the natural frequency in analytical expression One is in a simple form and suitable for higher deformation mode of the shell. Another seems to be exact and be used to a case of the shell partially immersed in fluid. When the shell is fully immersed in fluid results show: fur the lower deformation mode of the shell, the surrounding fluid has remarkable effect upon the natural frequency; for the higher mode, the fluid effect becomes small. When the shell is partially immersed in fluid. it does not occur always that the greatest effect take place at the lowest deformation mode.

  • PDF

Acoustic scattering of an obliquely incident acoustic field by a finite elastic cylindrical shell (비스듬히 입사하는 음장에 대한 유한 길이의 탄성 원통 쉘의 음향 산란)

  • Lee, Keunhwa;Byun, Sung-Hoon;Kim, Sea-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.511-521
    • /
    • 2019
  • In this study, we theoretically study the acoustic scattering of an obliquely incident plane wave from a finite elastic cylindrical shell. A heuristic scattering method of Ye [Z. Ye, J. Acoust. Soc. Am. 102, 877-884 (1997)] for a finite fluid cylinder is extended into a finite elastic cylindrical shell since no analytic solutions exist in the finite cylinder. The elastic cylindrical shell is modeled with the 3D elastic wave theory considering internal fluid. Using the derived analytic solution, we observe the effect of the internal fluid on the scattering field, the scattering field for the Rayleigh parameter, and the far-field scattering function for the elastic property of the cylindrical shell.

Follower Effect of the Axisymmetric Shells under External Pressure (축대칭 쉘 구조물에 작용하는 외압의 부가효과)

  • Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.195-202
    • /
    • 2004
  • The shell due to the effect of initial normal pressures on the shell surface was based on the assumption that the directions of the pressures are always normal to the undeformed shell surface, and that the change in the surface area of the shell is negligible. But the fact that the pressure are always normal to the deforming surface leads "follower force". The follower effect in the analysis can significantly alter the solution for natural frequency and buckling load as compared to the case when the direction of the pressures are assumed to be normal to the uniform shell surface. The expression for the part of strain energy contribution from normal pressure due to the effect of follower force was derived and added to the element stiffness matrix of axisymmetric shell. In the case of increasing external pressure, the natural frequencies decrease until one of them reaches zero. Theoretically the smallest applied load that reduces the frequency of any mode to zero, will have same magnitude as that of the buckling load. In order to determine the bucking load of the shell a few sets of frequencies are computed and the results considering the follower effects are well with the exact solution while the case without that are quite different. But in case of hemispherical dome, there are little difference in buckling pressure between with and without the effect of follower force.

A Study of Structural Stability and Dynamics for Functionally Graded Material Plates and Shells using a 4-node Quasi-conforming Shell Element (4절점 준적합 쉘 요소를 이용한 점진기능재료(FGM) 판과 쉘의 구조적 안정 및 진동 연구)

  • Han, Sung-Cheon;Lee, Chang-Soo;Kim, Gi-Dong;Park, Weon-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.47-60
    • /
    • 2007
  • In this paper, we investigate the natural frequencies and buckling loads of functionally graded material (FGM) plates and shells, using a quasi-conforming shell element that accounts for the transverse shear strains and rotary inertia. The eigenvalue of the FGM plates and shells are calculated by varying the volume fraction of the ceramic and metallic constituents using a sigmoid function, but their Poisson's ratios of the FGM plates and shells are assumed to be constant. The expressions of the membrane, bending and shear stiffness of FGM shell element are more complicated combination of material properties than a homogeneous element. In order to validate the finite element numerical solutions, the Navier's solutions of rectangular plates based on the first-order shear deformation theory are presented. The present numerical solutions of composite and sigmoid FGM (S-FGM) plates are proved by the Navier's solutionsand various examples of composite and FGM structures are presented. The present results are in good agreement with the Navier's theoretical solutions.

Nonlinear Analysis of Functionally Graded Materials Plates and Shells (점진기능재료(FGM) 판과 쉘의 비선형 해석)

  • Han, Sung-Cheon;Lee, Chang-Soo;Kim, Gi-Dong;Park, Weon-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.61-71
    • /
    • 2007
  • Navier's and Finite element solutions based on the first-order shear deformation theory are presented for the analysis of through-thickness functionally graded plates and shells. The functionally graded materials are considered: a sigmoid function is utilized for the mechanical properties through the thickness of the isotropic structure which varies smoothly through the plate and shell thickness. The formulation of a nonlinear 9-node Element-based Lagrangian shell element is presented for the geometrically nonlinear analysis. Natural-coordinate-based strains are used in present shell element. Numerical results of the linear and nonlinear analysis are presented to show the effect of the different top/bottom elastic modulus, loading conditions, aspect ratios and side-to-thickness ratios on the mechanical behaviors. Besides, the result according to the variation of the power-law index of isotropic functionally graded structures is investigated.

Finite Element Analyses on Local Buckling Strength of Polygonal-Section Shell Towers (축방향 압축을 받는 다각형 단면 쉘 기둥구조의 국부좌굴강도에 관한 해석적 연구)

  • Park, Seong-Mi;Choi, Byung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1900-1907
    • /
    • 2012
  • Since the subpanels of polygonal-section shell have the corners of an obtuse angle larger than 90 degree unlike general plate or box-section structures, this could have an influence on forming nodal lines against local plate buckling or stress distributions. However, there is not sufficient material in the relevant study results or design recommendations. The very feasible models of the initial imperfections were acquired through the literature studies and then the parametric studies were conducted along with the initial imperfection models by using the finite element method. The parameters like the size of residual stresses, the portion of compressive residual stresses, and steel grades were considered. From the parametric studies, it was found that the maximum residual stress is more influential factor than the distribution pattern of residual stresses. In addition, The design strength equations for the simply supported plates can be applicable to the determination of the local buckling strength of the polygonal cross-section shell structures.

Geometrically Linear and Non-linear Analysis of Plates and Shells Resting on Arbitrary Elastic Edge Supports (임의의 탄성 경계 지점으로 지지된 판과 쉘의 기하학적 선형 및 비선형해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Park, Weon-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.11-21
    • /
    • 2008
  • A linear and non-linear analysis for plates and shells with arbitrary edge supports subjected to various loading was presented. The 9-node ANS(Assumed Natural Strain) hell element was employed and the spring element, which could express an arbitrary edge support using the six degrees of freedom, was introduced. For the application of his analysis, the plates and shells with various edge supports were analyzed, and the ending behavior with these edge supports were obtained accurately. For these edge supports, particularly elastic edge support was simulated by six springs and reasonable results were obtained. The results show that the present method can be widely used to analyze the bending behavior of plates and shells with arbitrary edge conditions.