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Free Vibration of a Thin Circular Cylindrical Shell in Fluid
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Abstract ] Two methods are presented to calculate the natural frequency of an elastic thin circular
cylindrical shell vibrating in fluid. Both of them give the natural frequency in analytical expression.
One is in a simple form and suitable for higher deformation mode of the shell. Another seems
to be exact and be used to a case of the shell partially immersed in fluid. When the shell is fully
immersed in fluid, results show: for the lower deformation mode of the shell, the surrounding fluid
has remarkable effect upon the natural frequency; for the higher mode, the fluid effect becomes
small. When the shell is partially immersed in fluid, it does not occur always that the greatest effect

take place at the lowest deformation mode.
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1. INTRODUCTION

When we consider a structural vibration, it is ne-
cessary to know the natural frequency of the struc-
ture at first. In many engineering problems, the
structure is vibrating in a fluid. The interaction
between vibrating structures and contiguous fluids
has a profound influence upon amplitudes and fre-
quencies of the structural vibration. Examples include
dams, chimney stacks, heat exchanger tubes, ships
and their propeller, off-shore platforms, aircraft,
electrical transmission cables, and so on. In many of
these cases, the fluid itself is responsible for the
vibration. The reaction of the surrounding fluid is
such as to alter the natural frequencies of structure
from its values in vacuum. It is necessary to con-

sider the fluid effect on the natural frequency of the,

structure, especially when the fluid is a liquid of

high density.

Because a circular cylindrical shell is widely used
in various structures, its vibration in fluid were an-
alyzed by many investigators. Breslavskii (1966) cal-
culated the natural frequencies of cylindrical shell
filled with liquid, and gave an approximate solution
in analytical form. Pallet (1972) applied statistical
methods to research the vibration of cylindrical
shells. Lomas and Hayek (1977) and Warburton
(1978) considered the effect of fluid-loaded on the
natural frequencies of plates and shells. There are
also a lot of these investigations which used nume-
rical methods to calculate the natural frequencies
of shell.

In the following, we present two methods to cal-
culate the natural frequencies of a thin cylindrical
shell vibrating in fluid. One is. through a simplifi-
cation, to solve the coupled equations of shell vi-
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bration and fluid motion. Another is to use the en-
ergy relation of the coupled system. By using the
Lagrange equation we obtain the natural frequen-
cies. The cylinder shell theory is given by Flugge
(1960), which becomes Donnell’s approximate equa-
tion by simplification. The fluid is assumed to sati-
sfy the potential flow theory. The natural frequency
of the shell vibrating in fluid is expressed in a form
of combining the natural frequency in vacuum and
an influence factor. The influence factor is given
in series form, which converges quickly.

2. A FUNDAMENTAL MATHEMATICAL
MODEL AND A SOLUTION

We write a cylindrical shell vibration equation
after Flugge (1960) as

u _az_ll_
ot
C
Stad | v =] W 1)
a ot
ow
w — s —P
Wor ¥
where
AII A]l AI3
[Ar]:<A:| Ay Axn
A}I A32 A}J

is a symmetrical operator matrix and

3 e}

, o 1—v J
Aj=a" +(1+K) — —,
n=a ox° ( ) 2 o0
1 2

An=Ay= Ty a 2 \
2 200 ¢)
Ap=A;=va——
. o (I-v) ¢
+ —_nd Y + S S Y
k{ a x> a 2 aanZ}
& l-v , &
A»n= +(1+ - a’ .
2= o (1+3K) 3 a e
A 0 3=v , &
An=An= —“ae K 5 axzae N

b

A33=1+K(a4A3+2—@;, +1),
o0
ES ES' D &
:———\D:-———, K= — =— |
=1 12(1—v) Ca 122

In the above equations, a is radius of the middle
surface of shell, § thickness of the shell, E Young's
modulus, v Poisson’s ratio, u mass of the shell per
unit area of middle surface, P external compressive
force per unit area, and A is the Laplacian, which
is written in the polar coordinate system
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In the present analysis we put %20, r=a and
use
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We consider the free vibration of a shell immer-
sed in fluid, with simply supported edges, as illus-
trated in Fig. 1. The boundary conditions are expre-
ssed as follow

aw
= -— =0, =0 or x=L;
w=0, ax2 x=vo Q)
v=0, o =0, x=0 or x=L.
%

If the displacement functions are taken in the follow-
ing forms
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W =wee ™,
the equations of the shell vibration and the boun-
dary conditions are satisfied, in which ® is a circu-
lar frequency of vibration, L is the length of the
shell, and m is an integer representing deformation
mode of the shell, that is, a number of deformation
wave in circumferential direction of the shell, and
n is also an integer representing a number of half
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Fig. 1. A simply supported cylindrical shell vibrating in
fluid.

wave in axial direction of the shell.

The fluid motion is induced by the shell vibra-
tion. We take the fluid surrounding the shell as
inviscid and incompressible. The velocity potential
of the fluid motion is expressed by @, and in the
cylindrical coordinate @ is governed by
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The normal component of fluid speed vanishes on
the bottom,
0P

—5; =0, x=0; &)

the free surface condition is expressed as
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the normal velocity component of fluid, on the shell
surface, coincides with the velocity of shell
0P _ ow

, r=a, 0<x<H; @)
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where H is the fluid depth and g is the gravity
acceleration. Wave induced by shell vibration vani-

shes at infinity
Ve ﬁ§ ~ia®) 0, . ®)

which is the Sommerfeld radiation condition in cy-
lindrical polar coordinate (Mei, 1989). The solution
of ® may be taken in the following form

O=®, cos mG[AOHﬁ,‘,’(ar) cosh ax
+ Z AK(our) cos akx], )
k=1

where H{(z) is the Hankel function of the first
kind, K,(z) is the modified Bessel function of the
second kind, o. and « are governed by the disper-
sion relation derived from the free surface boundary
condition

o*=ga tanh aH, (10
and
o?*=—ga, tan oH. an

Coefficients A, are determined by the boundary
condition that the normal components of the velo-
city of the fluid and shell coincide at the interface
of fluid and shell. Substituting the velocity potential
in the boundary condition of shell surface, we ob-
tain

@, cos me[AaH,’,(.”(aa) cosh ax’

+ iAkakK,;(aka) cos akx]
k=0

= —iwe “w, cos m0 sinn—lfx. (12)

Taking
d>0=—i(oe”""'wo, (13)

and expanding the sin %’—( in the form of cosh ax

and cos o.x series, we get
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As long as we consider small vibration of a shell,
the fluid wave amplitude induced by the shell vi-
bration is very small. According to Mei’s analysis
(Met et al., 1979; Mei, 1989), in the case, the gravity
may be ignored. The free surface boundary condi-
tion is simplified to

o =0 x=H. (16)

and we have
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When the effect of axial and circumferential iner-
tial force —p—aa%l and —pﬁa%’ is small, we can use
Donnell’s approximation (Hayashi, 1966). We exp-

ress the vibration equation in forms
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where P is obtained by the Bernoulli equation

p=-s[ ]

p being the mass density of fluid. Substituting the
displacement functions expressed by Eq. (3) in the
above first two equation, we obtain
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where )\:T' When we consider a case that the

fluid depth H coincides with the shell length L,
we have from the third equation of (18) that
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which is the natural frequency of shell in vacuum
_ 2
(Hayashi, 1966) and n= 12(1—v)a , and expanding
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The relation must hold along the shell axial direc-

tion 0<x<L. We consider a mean value of the

above equation by taking the axial deformation
. nm . .

mode sin —— X as a weight function. We have a

natural frequency of the shell in fluid

2
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where & express the effect of fluid around the
shell and is given by
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3. A SOLUTION OBTAINED FROM THE
LAGRANGE EQUATION

In the above calculation we considered a case
that the fluid depth H is the same as the shell
length L. In order to treat cases in which the shell
immerse in the fluid partially, we use the Lagrange
equation of motion. The kinetic energy and poten-
tial energy of the coupled system (shell and fluid)
are expressed by T and U, respectively. The kinetic
energy of the shell is given by

T sl LS5 TS

Substituting the displacement functions of the shell,
we obtain after integration

Ty= L 02+ v+ w). (24)

In the case of vortex-free motion of a fluid in a
simply connected rigion the kinetic energy of the
entire fluid depends on its motion at the bound-
aries. From the fact and invoking the boundary co-
nditions of @ mentioned above, we get
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in the last integration the fluid free surface was ap-
proximately taken at x=H. If the wave amplitude
is very small or the gravity is ignored, the last inte-
gration may be ignored. Therefore, the total kinetic
energy of the system is given by

T - Trh + Tw
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According to the Love-Timoshenko theory, the elas-
tic strain energy of a thin cylindrical shell is given
as
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Substituting the assumed. displacement functions
into the above expression, we have
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The potential energy of fluid is expressed as
U= [ ek, s @
s 2

where ( is the displacement of fluid free surface,
ie., the difference between moving free surface and
mean(static) one. For small wave amplitude or ig-
noring gravity, it can be neglected. The shell strain
energy is the total potential energy of the system.
Substituting the U and T in the Lagrange equa-
tion

i£+a_U

5 =0, 2
ot 90 aQ (28)

we obtain a set of algebra equations in terms of
Ug, Vo and Wy,
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where d=2(1—v). The above set of algebra equation
in terms of ug, vy and wy, must have a nontrivial
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solution. We put its coefficient determinant zero.
This yields a third-degree equation in terms of Q,
which is defined by

Q= % I~ (29)
By putting

H 0
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Fig. 3. Approximate solution.
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putting x*= %;2. Considering a thin shell,% <1,
we neglected the terms associated with

We show the third degree expression Eq. (31) in
Fig. 2, for m=4, n=2, 3, 4, 5, 6. We see three real
and positive roots at m=4 and n=2. As n increases,
the bigger two roots become complex conjugate and
the smallest one remains real and positive; but for
larger n, there still are three real and positive roots.
We also show in Fig.3 the above third degree ex-
pression with a first degree expression B;Q2—B,. We
see that there exists only a small difference between
the two expressions as long as ) takes values be-
tween 0 and 1. We have an approximate solution
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Fig. 4. Natural frequencies of shell from the simplified
equation.
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In order to obtain a solution in simple form, we
ignore terms of x* with the higher orders and
write

Bo _ (1—vA*+x’R
B: (A+e)R2+m?P+GB+H2vAi+m?’
where
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R=by—by—.
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Retaining a term of the highest order of A and m
we approximate
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representing the natural frequency vibrating of shell
in vacuum, and
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Fig. 5. Natural frequencies of shell vibrating in fluid from
the simplified equation.
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expressing the fluid effect on the natural frequency
of shell.

4. RESULTS AND DISCUSSION

We show results obtained by Donnell's approxi-
mation wy and o, in Fig. 4 and 5; and by Lagrange
method g and , in Fig. 6 and 7, respectively. We
took modes: n=1, 2--- & m=0, 1--+ 12

When the shell deforms in the higher mode, ie.,
m and n large, values obtained by both method
are almost the same; however, in the lower mode
the difference is remarkable. This reflects that Don-
nell's approximation is only suitable for the higher
mode deformation (Noff, 1955; Flugge, 1960).

As expected, the natural frequencies in fluid are
smaller than those in vacuum. The fluid (added
mass) effect are remarkable in the lower mode de-
formation; and less in the higher mode. Water far
from the shell is induced into motion when the
shell vibrates in the lower mode; however, only the
near field fluid is involved in the higher mode.

In order to study effects of fluid depth, we selec-
ted three cases: %=1.0, 0.5, and 0.3. Results are

shown in Fig. 8. We also made a Table 1. It shows
the maximum relative difference of the natural fre-

quencies in fluid and vacuum, ie.
. Wy~ 0
diff= Max{ —_— }

o =Max{1—

1
\/ 1+& }‘
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Fig. 6. Natural frequencies of shell vibrating in vacuum. Fig. 7. Natural frequencies of shell vibrating in fluid.
Table 1. Maximum relative difference of . and wx
H/L 10 0.5 03
n m diff € m diff & m diff . &
1 2 0463 2484 2 0.258 0.818 2 0.077 0.173
2 1 0425 2.026 1 0.315 1.133 2 0.174 0.465
3 0 0407 1.184 0 0.292 0.997 0 0219 0.638
4 0 0.378 1.583 0 0271 0.881 0 0.207 0.589
5 0 0.348 1.355 0 0.228 0678 0 0.179 0482
6 0 0.321 1172 0 0.220 0.644 0 0.162 0425
7 0 0.298 1.027 0 0.195 0.542 0 0.142 0.358
8 0 0.278 0911 0 0.182 0.496 0 0.120 0.292,
(K11}
- VIBRATING IN FLUID
a’wy —— VIBRATING IN VACUUM
n=1 n=2 n=3 n=4

Fig. 9. Axial deformation modes.

with the circumferential mode m at which the
above maxima occurs, when we give the axial defor-

' v $ = oom mation mode 7. As it is conjectured easily, the
Lawm difference is small as the fluid depth is small. As

. °-:’5 it is seen from the table, when the shell immerses

5 i i e ’ ”m - fully %= 1, the biggest value of the maximum rela-

Fig. 8. Effects of fluid depth on the shell natural frequen- tive difference is obtained at the deformation mode

cies of shell vibrating in fluid.

n=1 and m=2. However, when the shell immerses
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partially, the bigger one occurs at the different
mode. Let us consider a case, for example, the half

H_1
L= The
immersed part has more effect in the second mode
(n=2) compared to that of the first one (n=1); the
more interaction between shell and fluid occurs in
the second deformation mode, just as illustrated in

Fig.9.

length of shell is immersed in fluid

5. CONCLUSION

Approximate analytical expressions of the natural
frequency of thin cylindrical shell in fluid have
been presented by two methods. Both of them are
in forms of the natural frequency in vacuum com-
bined with a factor of the fluid effect.

When the cylindrical shell is vibrating in a fluid,
the surrounding fluid has a great effect on the shell
natural frequency, particularly in the low-frequency
vibration. Generally, the lower the deformation
mode of shell is, the more effect the surrounding
fluid produces on the natural frequency. But in the
case that the shell is partially immersed in fluid,
the conclusion is slightly different, at least for these
several lower deformation modes.
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