• Title/Summary/Keyword: 수학 문제 해결

Search Result 1,332, Processing Time 0.025 seconds

Analyzing research questions from pre-service mathematics teachers in statistical problem solving process (통계적 문제해결 과정에서 예비 수학교사들의 탐구 질문 분석)

  • Kim, Sohyung;Han, Sunyoung
    • The Mathematical Education
    • /
    • v.60 no.3
    • /
    • pp.363-386
    • /
    • 2021
  • To learn statistics meaningfully, we must provide an opportunity to experience the process of solving statistical problems with actual data. In particular, exploration questions at the problem setting stage are important for students to successfully guide them from the beginning to the conclusion of the statistical problem solving process. Therefore, in this study, a mixed research method was carried out for the exploration questions of pre-service mathematics teachers during the problem setting stage. As a result, some pre-service mathematics teachers categorized incorrect statistical questions because they did not clearly define the meaning or variables of the questions in the process of categorizing them from possible questions. In addition, questions that cannot be solved statistically were categorized due to misconceptions about statistical knowledge. Second, only 50% of the pre-service mathematics teachers met all 6 conditions suitable for solving statistical problems, while there maining they met only a few conditions. Therefore, the conclusion of this study is as follows. First of all, they should be given the opportunity to experience all the statistical problem solving processes through teacher education because they do not have enough experience in statistical problem solving. Secondly, since the problem setting stage is very important in the statistical problem solving process, a series of subdivided processes are also required in the problem setting stage.

다각형의 넓이 및 그 활용에 관한 연구

  • Han, In-Gi;Sin, Hyeon-Yong
    • Communications of Mathematical Education
    • /
    • v.12
    • /
    • pp.155-170
    • /
    • 2001
  • 중등학교 수학교육 분야에서 기하 영역과 관련된 많은 연구들을 볼 수 있는데, 이들 중에서 도형에 관련된 다양한 개념 자체에 대한 심도 있는 논의는 많이 이루어지지 않았다. 예를 들어, 우리에게 가장 친숙한 개념들 중의 하나가 넓이임에도 불구하고, 왜 한 변의 길이가 a인 정사각형의 넓이가 a$^2$인가? 와 같은 물음은 그리 쉽지 않은 질문이 될 것이다. 그리고, 다각형의 넓이 자체는 다양한 수학 문제의 해결을 위한 중요한 도구이지만, 넓이를 활용한 다양한 문제해결의 경험을 제공하지 못하고 있다. 본 연구에서는 다양한 다각형들의 넓이를 규정하는 공식들을 유도하고, 유도된 넓이의 공식들을 활용한 다양한 문제해결의 아이디어를 제시하고, 이를 통해, 다각형의 넓이를 활용한 효율적인 수학 교수-학습을 위한 접근을 모색할 것이다.

  • PDF

The effect of algebraic thinking-based instruction on problem solving in fraction division (분수의 나눗셈에 대한 대수적 사고 기반 수업이 문제해결에 미치는 영향)

  • Park, Seo Yeon;Chang, Hyewon
    • Education of Primary School Mathematics
    • /
    • v.27 no.3
    • /
    • pp.281-301
    • /
    • 2024
  • Many students have experienced difficulties due to the discontinuity in instruction between arithmetic and algebra, and in the field of elementary education, algebra is often treated somewhat implicitly. However, algebra must be learned as algebraic thinking in accordance with the developmental stage at the elementary level through the expansion of numerical systems, principles, and thinking. In this study, algebraic thinking-based classes were developed and conducted for 6th graders in elementary school, and the effect on the ability to solve word-problems in fraction division was analyzed. During the 11 instructional sessions, the students generalized the solution by exploring the relationship between the dividend and the divisor, and further explored generalized representations applicable to all cases. The results of the study confirmed that algebraic thinking-based classes have positive effects on their ability to solve fractional division word-problems. In the problem-solving process, algebraic thinking elements such as symbolization, generalization, reasoning, and justification appeared, with students discovering various mathematical ideas and structures, and using them to solve problems Based on the research results, we induced some implications for early algebraic guidance in elementary school mathematics.

Mathematics teachers' Key Developmental Understandings for teaching equation writing (수학교사의 대수식 쓰기 지도를 위한 발달에 핵심적인 이해)

  • Choi, Yunhyeong;Lee, Soo Jin
    • The Mathematical Education
    • /
    • v.60 no.3
    • /
    • pp.297-319
    • /
    • 2021
  • The present study explored a relationship between mathematical understandings of teachers and ways in which their knowledge transferred in designing lessons for hypothetical students from Gess-Newsome (1999)'s transformative perspective of pedagogical content knowledge. To this end, we conducted clinical interviews with four secondary mathematics teachers of their solving and teaching of equation writing. After analyzing the teacher participants' attention to Key Developmental Understandings (Simon, 2007) in solving equation writing, we sought to understand the relationship between their mathematical knowledge of the problems and mathematical knowledge in teaching the problems to hypothetical students. Two of the four teachers who attended the key developmental understandings solved the problems more successfully than those who did not. The other two teachers had trouble representing and explaining the problems, which involved reasoning with improper fractions or reciprocal relationships between quantities. The key developmental understandings of all four teachers were reflected in their pedagogical actions for teaching the equation writing problems. The findings contribute to teacher education by providing empirical data on the relationship between teachers' mathematical knowledge and their knowledge for teaching particular mathematics.

Application of Long-term Slow Thinking(Flow) to Improve Mathematical Thinking Ability in the Process of Solving a Basic Calculus Problem (미적분 문제해결 과정에서 수학적 사고력 향상을 위한 몰입적 사고의 적용)

  • Lee, Dong-Kwon;ChoiKoh, Sang-Sook;Hwang, Nong-Moon
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.1
    • /
    • pp.31-54
    • /
    • 2008
  • The discovery method is known to be the most effective in improving students' mathematical thinking. Recently, the long-term slow thinking(LST) is suggested as a possible method to implement the discovery method into the real classroom. In this concept, we examined whether students can solve such a problem, as appears to be beyond their ability, by themselves(LST) or not. 10 middle school students of the ninth grade were selected for the study, who had no previous experience on the infinite concept of calculus of the high school course. They had tried to solve a problem about the calculus by their LST for three days. Two of students solved the problem by themselves and seven of students solved it with help of hints. This result shows that if students are given the opportunity of LST for rather difficult mathematical problem with appropriate guidance of a teacher, they might solve it by themselves. That is, LST could be a possible method for implementation of the discovery method.

  • PDF

The Effects of Mathematics-Centered STEAM Program on Middle School Students' Interest in STEM Career and Integrated Problem Solving Ability (수학교과 중심의 STEAM 수업이 중학생들의 STEM 분야 진로 흥미도 및 융합적 문제해결력에 미치는 영향)

  • Han, Hyesook
    • Communications of Mathematical Education
    • /
    • v.31 no.1
    • /
    • pp.125-147
    • /
    • 2017
  • The purpose of this study was to investigate the effects of mathematics-centered STEAM program which was operated in free semester system classes on middle school students' interest in science, technology/engineering, and mathematics(STEM) career and integrated problem solving ability. The study was conducted with 40 first graders in a middle school for 12 weeks using mathematics-centered STEAM program developed for the use of free semester system classes by the support of the Ministry of Education/KOFAC in 2016. According to the results of STEM career interest survey, mathematics-centered STEAM program was effective for improving middle school students' interest in STEM career. And it was also effective in the development of students' integrated problem solving ability.

A study on the improvement of ability of a creative solving mathematical problem (수학문제의 창의적 해결력 신장에 관한 연구 -농어촌 중학교 수학영재를 중심으로-)

  • 박형빈;서경식
    • Journal of the Korean School Mathematics Society
    • /
    • v.6 no.1
    • /
    • pp.1-17
    • /
    • 2003
  • In this paper, we study the methods of improving an ability of a creative solving mathematical problem belonging to an educational system which every province office of education has adopted for the mathematically talented students. Especially, we give an attention on a preferential reaction in teaching styles according to student's LQ., the relationship between student's LQ. and an ability of creative solving mathematical problems, and seeking for an appropriative teaching methods of the improvement ability of a creative solving problem. As results, we have the followings; 1. The group having excellent students who have a higher intelligential ability prefers inquiry learning which is composed of several sub-groups to a teacher-centered instruction. 2. The correlation coefficient between student's LQ. and an ability creative solving of mathematical is not high. 3. Although the contents and the model of thematic inquiry learning don't have a great influence on the divergent thinking (ex. fluency, flexibility, originality), they affect greatly the convergent thinking - a creative mathematical - problem solving ability. Accordingly, our results show that we should use a variety of mathematical teaching materials apart from our regular textbooks used in schools to improve a creative mathematical problem solving ability in the process of thematic inquiry learning. Also we can see that an inquiry learning which stimulates student's participation and discussion can be a desirable model in the thematic mathematical classroom activities.

  • PDF

Investigating on the Building of 'Mathematical Process' in Mathematics Curriculum (수학과 교육과정에서 '수학적 과정'의 신설에 대한 소고)

  • Park, Hye-Suk;Na, Gwi-Soo
    • Communications of Mathematical Education
    • /
    • v.24 no.3
    • /
    • pp.503-523
    • /
    • 2010
  • The current mathematics curriculum are consist of the following domains: 'Characteristics', 'Objectives', 'Contents', 'Teaching and learning method', and 'Assessment'. The mathematics standards which students have to learn in the school are presented in the domain of 'Contents'. 'Contents' are consist of the following sub-domains: 'Number and Operation', 'Geometric Figures', 'Measures', 'Probability and Statistics', and 'Pattern and Problem-Solving' (Elementary School); 'Number and Operation', 'Geometry', 'Letter and Formula', 'Function', and 'Probability and Statistics' (Junior and Senior High School). These sub-domains of 'Contents' are dealing with mathematical subjects, except 'Problem-Solving' at the elementary school level. In this study, the sub-domain of 'mathematical process' was suggested in an equal position to the typical sub-domains of 'Contents'.

Decision Making from the 5th Grade' III-Structured Problem of Data Analysis (자료분석에 관한 비구조화된 문제해결모형 적용에서 나타난 초등학교 5학년 학생들의 의사결정에 관한 연구)

  • Kim, Min-Kyeong;Lee, Ji-Young;Hong, Jee-Yun;Joo, Hyun-Jung
    • Communications of Mathematical Education
    • /
    • v.26 no.2
    • /
    • pp.221-249
    • /
    • 2012
  • The purpose of this study is to investigate students decision-making progress through ill-structured problem solving process. For this study, 25 fifth graders in an elementary school were observed by applying ABCDE model (Analyze - Browse - Create - Decision making - Evaluate), and analyzed their decision-making progress analyzing framework which follows 3 steps - making their own decision, discussing/revising with peers, and lastly decision making/solving problem. Upper two groups with better performance in ill-structured problem solving model among 6 groups showed active discussion in group and decision making process with 3 steps (making their own decision, discussing/revising with peers). Even though their decisions are not good-fit to mathematical reasoning result, development and application of ill-structured problems would bring better ability of high level thinking and problem solving to students.