This research intends to analyse how mathematically gifted 8th graders (age 14) discover and proof the properties on the sum of face angles of polyhedron. In this research, the problems on the sum of face angles of polyhedrons were given to 36 gifted students, and their discovery and proof processes were analysed on the basis of their the activity sheets and the researcher's observation. The discovery and proof processes the gifted students made were categorized, and levels revealed in their processes were analysed.
This study compared and analyzed students' reasoning processes and justification methods when introducing the concept of "the sum of angles in a triangle" in mathematics classes with a focus on both measurement and geometric aspects. To confirm this, the research was conducted in a 4th-grade class at H Elementary School in Suwon, Gyeonggi-do, South Korea. The conclusions drawn from this study are as follows. First, there is a significant difference when introducing "the sum of angles in a triangle" in mathematics classes from a measurement perspective compared to a geometric perspective. Second, justifying the statement "the sum of angles in a triangle is 180°" is more effective when explained through a measurement approach, such as "adding the sizes of the three angles gives 180°," rather than a geometric approach, such as "the sum of the angles forms a straight angle." Since elementary students understand mathematical knowledge through manipulative activities, the level of activity is connected to the quality of mathematics learning. Research on this reasoning process will serve as foundational material for approaching the concept of "the sum of angles in a triangle" within the "Geometry and Measurement" domain of the Revised 2022 curriculum.
In this study, under the assumption that the goal pursued in measurement area can be reached through the composition of the measurement activity considering the mathematical process, the method of summing the interior angles of a triangle using the measurement error was applied to the 4th grade class of the elementary school. Results of the study, first, students were able to recognize the possibility of measurement error by learning the sum of the interior angles of a triangle using the measurement error. Second, the discussion process based on the measurement error became the basis for students to attempt mathematical justification. Third, the manipulation activity using the semicircle was recognized as a natural and intuitive way of mathematical justification by the students and led to generalization. Fourth, the method of guiding the sum of the interior angles of a triangle using the measurement error contributed to the development of students' mathematical communication skills and positive attitudes toward mathematics.
수학은 추상적인 학문이다. '추상'은 몇 개 또는 무한히 많은 사물의 공통성이나 본질을 추출하여 파악하는 사고작용이다. 이렇게 추상된 것들을 모아 분류를 하고 그 다음에 이름을 붙이는 것이 바로 개념이 형성되는 과정이고 수학자가 수학을 하는 과정이다. 이 개념들은 여러 가지 모양으로 결합하여 스키마라고 부르는 개념 구조를 형성하게 되는데, 이 스키마는 수학적 사고를 하는데 매우 중요한 역할을 하여 수학을 개념적으로 이해하는데 도움을 주며, 새로운 지식을 얻는데 필요한 필수적인 도구가 된다. 본 논문에서는 연속적인 수열의 합의 공식에 대하여 학생들이 Skemp가 말한 '관계적 이해'를 할 수 있도록 스키마를 이용하여 문제를 해결할 수 있는 모델과 원주의 스키마를 이용한 생활 속의 문제를 제시하여 학생들이 공식을 암기하기보다는 수학의 구조를 파악하고 연계성을 이해함으로서 능동적인 구성활동을 유발하여 수학에 대한 흥미를 느낄 수 있도록 도움을 주고자 한다.
In the 21C information-based society, there is an increasing demand for emphasizing communication in mathematics education. Therefore the purpose of this study was to research how properties of communication among small group members varied by mathematical problem types. 8 fourth-graders with different academic achievements in a classroom were divided into two heterogenous small groups, four children in each group, in order to carry out a descriptive and interpretive case study. 4 types of problems were developed in the concepts and the operations of fractions and decimals. Each group solved four types of problems five times, the process of which was recorded and copied by a camcorder for analysis, among with personal and group activity journals and the researcher's observations. The following results have been drawn from this study. First, students showed simple mathematical communication in conceptual or procedural problems which require the low level of cognitive demand. However, they made high participation in mathematical communication for atypical problems. Second, even participation by group members was found for all of types of problems. However, there was active communication in the form of error revision and complementation in atypical problems. Third, natural or receptive agreement types with the mathematical agreement process were mainly found for conceptual or procedural problems. But there were various types of agreement, including receptive, disputable, and refined agreement in atypical problems.
This study examines the educational meaning of the sum of the angles of a triangle in elementary school mathematics and discusses the introduction and explanation methods to convey the meaning faithfully. First, we investigated how to introduce the sum of the angles of a triangle in the Korean national mathematics curriculums from the past to the present and surveyed the experiences and opinions of the teachers. The results of the survey are summarized and discussed in three parts: The context of 'arranging angles activities' and 'measuring angles activities', the methods to convey the meaning of the sum of the angles of a triangle as an invariance, and other details.
We have many problems in the teaching and learning of proof, especially in the demonstrative geometry of middle school mathematics introducing the proof for the first time. Above all, it is the serious problem that many students do not understand the meaning of proof. In this paper we intend to show that teaching the meaning of proof in terms of historic-genetic approach will be a method to improve the way of teaching proof. We investigate the development of proof which goes through three stages such as experimental, intuitional, and scientific stage as well as the development of geometry up to the completion of Euclid's Elements as Bran-ford set out, and analyze the teaching process for the purpose of looking for the way of improving the way of teaching proof through the historic-genetic approach. We conducted lessons about the angle-sum property of triangle in accordance with these three stages to the students of seventh grade. We show that the students will understand the meaning of proof meaningfully and properly through the historic-genetic approach.
The purpose of this study was to analyze the influence of mathematical tasks on mathematical communication. Mathematical tasks were classified into four different levels according to cognitive demands, such as memorization, procedure, concept, and exploration. For this study, 24 students were selected from the 5th grade of an elementary school located in Seoul. They were randomly assigned into six groups to control the effects of extraneous variables on the main study. Mathematical tasks for this study were developed on the basis of cognitive demands and then two different tasks were randomly assigned to each group. Before the experiment began, students were trained for effective communication for two months. All the procedures of students' learning were videotaped and transcripted. Both quantitative and qualitative methods were applied to analyze the data. The findings of this study point out that the levels of mathematical tasks were positively correlated to students' participation in mathematical communication, meaning that tasks with higher cognitive demands tend to promote students' active participation in communication with inquiry-based questions. Secondly, the result of this study indicated that the level of students' mathematical justification was influenced by mathematical tasks. That is, the forms of justification changed toward mathematical logic from authorities such as textbooks or teachers according to the levels of tasks. Thirdly, it found out that tasks with higher cognitive demands promoted various negotiation processes. The results of this study implies that cognitively complex tasks should be offered in the classroom to promote students' active mathematical communication, various mathematical tasks and the diverse teaching models should be developed, and teacher education should be enhanced to improve teachers' awareness of mathematical tasks.
The concept of infinite series is an important subject of major mathematics curriculum in college. For several centuries it has provided learners not only counter-intuitive obstacles but also central role of analysis study. As the understanding in concept on infinite series became foundation of development of calculus in history of mathematics, it is essential to present students to study higher mathematics. Most students having concept of infinite sum have no difficulty in mathematical contents such as convergence test of infinite series. But they have difficulty in organizing concept of infinite series of partial sum. Thus, in this study we try to analyze construct the concept of infinite series in terms of APOS theory and genetic decomposition. By checking to construct concept of infinite series, we try to get an useful educational implication on teaching of infinite series.
Even and odd numbers are taught in elementary school mathematics, but the introductory activities, definitions, and properties of sum on even and odd numbers vary depending on which grade they are presented. The purpose of this study was to compare and analyze the activities related to even and odd numbers presented in Korean mathematics textbooks developed under the different curriculum revisions, and to further analyze the related activities in foreign textbooks to draw implications for the teaching of even and odd numbers. In Korean textbooks, from the time of the fourth mathematics curriculum until the 2007 revision, even and odd numbers were covered in the multiples and divisors unit of the fifth grade textbook, while since the 2009 revision, the first grade textbook has covered the topic along with teaching numbers up to 50 or 100. In addition, the definitions of even and odd numbers varied depending on the grade level and the nature of the unit being taught, and activities addressing the properties of sum were only presented in the mathematics textbook under the third curriculum along with a few mathematics workbooks. In foreign textbooks, even and odd numbers were introduced in Grades 1, 2, or 5, and their related activities varied accordingly. Based on these findings, this study discusses the implications for the teaching of even and odd numbers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.