• Title/Summary/Keyword: 수학적 절차

Search Result 217, Processing Time 0.027 seconds

Enhanced PMIPv6 Route Optimization Handover using PFMIPv6 in Mobile Cloud Environment (모바일 클라우드 환경에서 PFMIPv6를 이용한 향상된 PMIPv6 경로 최적화 핸드오버 기법)

  • Na, Je-Gyun;Seo, Dae-Hee;Nah, Jae-Hoon;Mun, Young-Song
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.17-23
    • /
    • 2010
  • In the mobile cloud computing, the mobile node should request and receive the services while being connected. In PMIPv6, all packets sent by mobile nodes or correspondent nodes are transferred through the local mobility anchor. This unnecessary detour still results in high delivery latency and significant processing cost. Several PMIPv6 route optimization schemes have been proposed to solve this issue. However, they also suffer from the high signaling costs and handover latency when determining the optimized path. We propose the route optimization handover scheme which adopts the prediction algorithm in PFMIPv6. In the proposed scheme, the new mobile access gateway establishes the bi-directional tunnel with the correspondent node's MAG using the context message when the mobile node's handover is imminent. This tunnel may eliminate the need of separate route optimization procedure. Hence, the proposed scheme can reduce the signaling cost than other conventional schemes do. Analytical performance evaluation is preformed to show the effectiveness of the proposed scheme. The result shows that our scheme is more effective than other schemes.

Determination of Degree of Hydration, Temperature and Moisture Distributions in Early-age Concrete (초기재령 콘크리트의 수화도와 온도 및 습도분포 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.813-822
    • /
    • 2002
  • The purpose of the present study is first to refine the mathematical material models for moisture and temperature distributions in early-age concrete and then to incorporate those models into finite element procedure. The three dimensional finite element program developed in the present study can determine the degree of hydration, temperature and moisture distribution in hardening concrete. It is assumed that temperature and humidity fields are fully uncoupled and only the degree of hydration is coupled with two state variables. Mathematical formulation of degree of hydration Is based on the combination of three rate functions of reaction. The effect of moisture condition as well as temperature on the rate of reaction is considered in the degree of hydration model. In moisture transfer, diffusion coefficient is strongly dependent on the moisture content in pore system. Many existing models describe this phenomenon according to the composition of mixture, especially water to cement ratio, but do not consider the age dependency. Microstructure is changing with the hydration and thus transport coefficients at early ages are significantly higher because the pore structure in the cement matrix is more open. The moisture capacity and sink are derived from age-dependent desorption isotherm. Prediction of a moisture sink due to the hydration process, i.e. self-desiccation, is related to autogenous shrinkage, which may cause early-age cracking in high strength and high performance concrete. The realistic models and finite element program developed in this study provide fairly good results on the temperature and moisture distribution for early-age concrete and correlate very well with actual test data.

Research on Selecting Candidates for the Courses for the Gifted Children on Intelligence Technology (정보과학 분야의 영재교육 대상자 선발에 관한 연구)

  • Seo, Seong-Won;Jeon, Mi-Yeon;Hong, Rok-Ki;Lim, Gyeong-Jin;Shin, Mi-Hae;Kim, Eui-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.401-404
    • /
    • 2010
  • Researches on prodigies and education for those have recently been progressing in many fields. Education for the gifted, which was basically on Math and Science on the start, now includes Intelligence, Invention, Cultural Sciences, Art, and so on. With the progression towards extremely developed information society, interests in and importance on the courses for the talented get more and more focused. The problem is, however, choosing the gifted and educating them is not an easy matter, since the history of Intelligence Technology is relatively short and it is hard to identify prodigies and categorize what kinds of courses they need. Also, from 2010 "Science Education Institute for the Gifted" freshmen draft, paper-based admission test has been discarded and teacher-recommendation through long-term observation introduced. Therefore needs have been increasing for quality selection methods including observation records, recommendation letters, and portfolios. Reformation on teaching and creative selection methods has been accentuated because of lack of academic base for selecting candidates for education for the gifted. Because of all those mentioned above, reliances for the selection processes during the last three years and the one in 2010, observation records, recommendations and portfolios included, have been analyzed and evaluated. Several factors which can be used instead of paper-based tests were coordinated. Based on it, it was highly possible and has been successful to draft all the applicants in cognitive, sentimental, and creative fields.

  • PDF

An Analysis of Elementary School Students' Interpretation of Data Characteristics by Cognitive Style (초등학생의 인지양식에 따른 자료해석 특성 분석)

  • Lim, Sung-Man;Son, Hee-Jung;Yang, Il-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.1
    • /
    • pp.78-98
    • /
    • 2011
  • The purpose of this study was to analyze elementary school students' interpretation of data characteristics by cognitive style. Participants were elementary students in sixth grade who can use integrated inquiry process skills. The students were divided into two groups, analytic cognitive style and wholistic cognitive style according to their response to Cognitive Style Analysis. They performed scientific interpretation of data activity. To collect data for this study, participants recorded the result on scientific interpretation of data activity paper and researcher recorded the situation on videotape and interviewed with participants after the end of interpretation of data to get additional data. And the findings of this study were as follows: First, the study analyzed interpretation of data characteristics by the operator regarding different situations of interpreting data according to cognitive style. For example, in the intermediate state, analytic-cognitive style students showed high achievement in identifying variables, and wholistic-cognitive style students were active in using prior knowledge to interpret data. Second, the result of analysis on the direction of interpreting data and preference for data types in interpreting data activities according to cognitive style are as follows: Wholistic-cognitive style students showed relatively high perception of information through the top-down approach. On the other hand, analytic-cognitive style students usually used the bottom-up approach gradually expanding detailed information to the scientific question-related answer and showed a preference data of the table type. Through the result, this study aimed to help establish a data interpretation strategy for learners to solve problems based on understanding of interpretation of data characteristics according to learners' cognitive style, and purposed the instruction design suggesting the data requiring various data interpretation strategies to develop learners' data interpretation ability.

An Analysis on Shortest Path Search Process of Gifted Student and Normal Student in Information (정보영재학생과 일반학생의 최단경로 탐색 과정 분석)

  • Kang, Sungwoong;Kim, Kapsu
    • Journal of The Korean Association of Information Education
    • /
    • v.20 no.3
    • /
    • pp.243-254
    • /
    • 2016
  • This study has produced a checker of the shortest path search problem with a total of 19 questions as a web-based computer evaluation based on the 'TRAFFIC' questions of PISA 2012. It is because the computer has been settled as an indispensable and significant instrument in the process of solving the problems of everyday life and as a media that is underlying in assessment. Therefore, information gifted students should be able to solve the problem using the computer and give clear enough commands to the computer so that it can perform the procedure. In addition, since it is the age that the computational thinking is affecting every sectors, it should give students new educational stimuli. The relationship between the rate of correct answers and the time took to solve the problem through the shortest route search process showed a significant correlation the variable that affected the problem solving as the difficulty of the question rises due to the increase of nodes and edges turned out to be the node than the edge. It was revealed that information gifted students went through algorithmic thinking in the process of solving the shortest route search problem. And It could be confirmed cognitive characteristics of the information gifted students such as 'ability streamlining' and 'information structure memory'.

Composition of Curriculums and Textbooks for Speed-Related Units in Elementary School (초등학교에서 속력 관련 단원의 교육과정 및 교과서 내용 구성에 관한 논의)

  • Jhun, Youngseok
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.658-672
    • /
    • 2022
  • The unique teaching and learning difficulties of speed-related units in elementary school science are mainly due to the student's lack of mathematical thinking ability and procedural knowledge on speed measurement, and curriculums and textbooks must be constructed with these in mind. To identify the implications of composing a new science curriculum and relevant textbooks, this study reviewed the structure and contents of the speed-related units of three curriculums from the 2007 revised curriculum to the 2015 revised curriculum and the resulting textbooks and examined their relevance in light of the literature. Results showed that the current content carries the risk of making students calculate only the speed of an object through a mechanical algorithm by memorization rather than grasp the multifaceted relation between traveled distance, duration time, and speed. Findings also highlighted the need to reorganize the curriculum and textbooks to offer students the opportunity to learn the meaning of speed step-by-step by visualizing materials such as double number lines and dealing with simple numbers that are easy to calculate and understand intuitively. In addition, this paper discussed the urgency of improving inquiry performance such as process skills by observing and measuring an actual object's movement, displaying it as a graph, and interpreting it rather than conducting data interpretation through investigation. Lastly, although the current curriculum and textbooks emphasize the connection with daily life in their application aspects, they also deal with dynamics-related content somewhat differently from kinematics, which is the main learning content of the unit. Hence, it is necessary to reorganize the contents focusing on cases related to speed so that students can grasp the concept of speed and use it in their everyday lives. With regard to the new curriculum and textbooks, this study proposes that students be provided the opportunity to systematically and deeply study core topics rather than exclude content that is difficult to learn and challenging to teach so that students realize the value of science and enjoy learning it.

Design and Validation of Education Contents of Algorithm for the Gifted Elementary Students of Computer Science (초등정보과학영재를 위한 알고리즘 교육내용의 설계 및 검증)

  • Lee, Jae-Ho;Oh, Hyeon-Jong
    • Journal of Gifted/Talented Education
    • /
    • v.19 no.2
    • /
    • pp.353-380
    • /
    • 2009
  • The significant reason for studying computer science lies in the efficient resolution of various problems which can arise in actual life. Consequently, algorithm education is very important in the computer science and plays a great part in helping to enhance the creative ability to solve problems and to improve the programming ability. However, the current algorithm education at an computer science educational institute for the gifted has inadequate systematic quality and is only treated as a part of programming education. From this perspective, this paper carried out following studies in order to design the algorithm education for elementary computer science prodigies. First, the core educational contents was selected by extracting the common elements from existing books related to algorithm education, common study contents on algorithm lesson websites and the study area of ACM's computer algorithm. Second, using the development criteria and selected educational contents, the educational theme for the If weeks load was set. Additionally, the algorithm educational contents were designed for the elementary computer science prodigy based on such theme. Third, the activity site for the use of prodigy educational institute was developed with the background in the educational contents for the elementary computer science prodigy. Fourth, the Delphi analysis technique was used to verify the appropriateness of contents and activity site developed in this paper. It was carried out in 2 separate processes where the first process verified the design of educational contents, and the second process verified the appropriateness of developed activity site.