• Title/Summary/Keyword: 수소 압력용기

Search Result 75, Processing Time 0.021 seconds

Fall Impact Analysis of Type 4 Composite Pressure Vessels Using SPH Techniques (SPH 기법을 활용한 Type 4 복합재료 압력용기 낙하 충격 해석)

  • SONG, GWINAM;KIM, HANSANG
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.3
    • /
    • pp.172-179
    • /
    • 2021
  • The drop impact analysis was carried out on Type 4 pressure containers, and the degree of damage to the falling environment was predicted and determined using smoothed particle hydrodynamics (SPH) techniques. The purpose of the design and the optimization process of the winding pattern of the pressure vessel of the composite material is to verify the safety of the container in actual use. Finally, an interpretation process that can be implemented in accordance with domestic test standards can be established to reduce the cost of testing and containers through pre-test interpretation. The research on the fall analysis of pressure vessels of composite materials was conducted using Abaqus, and optimization was conducted using ISIGHT. As a result, the safety of composite pressure vessels in the falling environment was verified.

Strength Safety Study on the Stress Characteristics of a Composite Pressure Cylinder for 35MPa Hydrogen Gas Vehicle (35MPa 수소가스 자동차용 복합소재 압력용기의 응력특성에 관한 강도안전성 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.2
    • /
    • pp.25-30
    • /
    • 2012
  • This paper presents a stress safety of a composite pressure cylinder in which is composed of an aluminum liner and composite layers with carbon fiber/epoxy and glass fiber/epoxy resigns. The composite pressure cylinder for a hydrogen gas vehicle contains 9.2 liter hydrogen gas, and hydrogen gases are compressed by a filling pressure of 35MPa. The FEM computed results are analyzed based on the US DOT-CFFC basic requirement for a hydrogen gas cylinder and KS B ISO specification. The FEM results indicate that the stress, 247MPa of an aluminum liner is sufficiently low compared with that of 272MPa, which is 95% level of a yield stress for aluminum. And, the carbon fiber composite layers in which are wound on the surface of an aluminum cylinder are safe because the maximum carbon fiber stresses from 29.43% to 28.87% in hoop and helical directions are below 30% for a given minimum required burst pressure level, respectively. The carbon fiber composite layers are also safe because the stress ratios from 3.40 to 3.46 in hoop and helical directions are above 2.4 for a minimum safety level, respectively.

Finite Element Analysis for Performance Evaluation of Type III Hydrogen Pressure Vessel for the Clean Tech Fuel Cell Vehicles (친환경 연료전지 자동차용 Type III 수소 압력용기의 구조성능 평가를 위한 유한 요소 해석)

  • Son, Dae-Sung;Chang, Seung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.938-945
    • /
    • 2012
  • To design and estimate material failures of Type III pressure vessels, which have excellent stability and performance, various modeling techniques have been introduced. This paper provided a hybrid modeling technique composed of ply-based modeling for a cylinder part and laminate-base modeling technique for a dome part for enhancing modeling efficiency. The ply-based modeling technique provided accurate ply stresses directly for predicting material failure, on the other hand, additional manipulations in stress calculations, which may cause some errors, were needed for the case of the laminate-based modeling technique. The ply stresses in fiber, transverse and in-plane shear directions were compared with the corresponding material strengths to predict material failure.

Transient Analysis of Pressure Behavior of Cryogenics in Closed Vessel (극저온 저장용기의 내부압력 거동에 대한 비정상해석)

  • 강권호;김길정;박영무
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.19-27
    • /
    • 1996
  • Self-pressurization of cylindrical container of cryogen is numerically analyzed. The container is axi-symmetric and heated from side wall with constant heat flux. Natural convection by external heat flux is studied numerically using finite difference method. Oxygen, nytrogen and hydrogen are working fluids in this paper. Liquid is considered incompressible fluid and vapor is assumed to behave as gas meeting with virial equation of gas. The Second virial coefficients of gas are obtained from Lennard-jones model. The important variables which have effects on self-pressurization are external heat flux, heat capacity of wall and initial ullage in container. The most important variable of them is external heat flux. The pressure rise calculated from the virial gas model is slightly different from that calculated using Ideal gas model for oxygen.

  • PDF

A Study on the Deformation Characteristics of the hydrogen storage vessel(TYPE 1) with Notches using FEM (유한요소법을 이용한 노치가 형성된 수소저장용기 TYPE 1의 거동 특성 연구)

  • Seunghyun Cho;Sang Hyun Kim;Yun Tae Kim;Ha Young Choi
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.95-103
    • /
    • 2023
  • In this paper, in order to evaluate the deformation characteristics of the hydrogen gas storage vessel(Type 1) when considering gas pressure, the VMS generated in the hydrogen gas storage vessel according to the notch shape of ISO 18119 was interpreted as a FEM(Finite Element Method). According to the analysis results, the maximum VMS generated in the longitudinal notch was higher than the transverse notch. In addition, the stress of the storage vessel was analyzed by the stress ratio, which is the yield strength ratio of the material to the VMS generated. According to the analysis results, in the case of a storage vessel with a notch formed in the longitudinal direction, the inside and outside of the storage vessel increased to 0.85 and 0.50 at a gas pressure of 50 MPa, respectively, but were analyzed to be lower than 1.

Overview of Research Trends and Problems on Cr-Mo Low Alloy Steels for Pressure Vessel (압력용기용 Cr-Mo 계 저합금 강의 개발동향 및 재료적 문제점)

  • Chi, Byung-Ha;Kim, Jeong-Tae
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.67-76
    • /
    • 2000
  • Cr-Mo low alloy steels have been used for a long time for pressure vessel due to its excellent corrosion resistance, high temperature strength and toughness. The paper reviewed the latest trends on material development and some problems on Cr-Mo low alloy steel for pressure vessel, such as elevated temperature strength, hardenability, synergetic effect between temper and hydrogen embrittlement, hydrogen attack and hydrogen induced disbonding of overlay weld-cladding.

  • PDF

Development of the High Pressure Hydrogen Gas Cylinder(Type4) for Fuel Cell Vehicle;Design Qualification Tests (연료전지 차량용 고압기체수소 저장용기(Type4)개발;설계검증시험)

  • Yoo, Gye-Hyoung;Ju, Yong-Sun;Heo, Seok-Bong;Jeon, Sang-Jin;Kim, Jong-Lyul;Lee, Jong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.193-196
    • /
    • 2007
  • We developed and tested the high pressure hydrogen gas cylinder(type4) for fuel cell vehicle. The working pressure is 350bar. We conducted material tests, production tests and design qualification tests on the developed cylinders according to modified NGV2-2000(hydrogen). The high pressure hydrogen gas cylinder met all the design qualification requirements of ANSI/CSA NGV2-2000 and acquired NGV2 certification from independent inspection agency.

  • PDF

Overview of Research Trends and Problems on Cr-Mo Low Alloy Steels for Pressure Vessel (압력용기용 Cr-Mo 계 저합금 강의 개발동향 및 재료적 문제점)

  • Chi, Byung-Ha;Kim, Jeong-Tae
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.67-76
    • /
    • 2000
  • Cr-Mo low alloy steels have been used for a long time for pressure vessel due to its excellent corrosion resistance, high temperature strength and toughness. The paper reviewed the latest trends on material development and some problems on Cr-Mo low alloy steel for pressure vessel, such as elevated temperature strength, hardenability, synergetic effect between temper and hydrogen embrittlement, hydrogen attack and hydrogen induced disbonding of overlay weld-cladding.

  • PDF

A Safety Study on the Stress Characteristics of a Composite Pressure Cylinder for a Use of 70MPa Hydrogen Gas Vehicle (70MPa 수소가스차량용 복합소재 압력용기의 응력특성에 관한 안전성 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • This paper presents a stress safety of a composite pressure cylinder for a hydrogen gas vehicle. The composite pressure cylinder in which is composed of an aluminum liner and carbon fiber wound layers contains 104 liter hydrogen gas, and is compressed by a filling pressure of 70 MPa. The FEM computed results are analyzed based on the US DOT-CFFC basic requirement for a hydrogen gas cylinder and KS B ISO specification. The FEM results indicate that the stress, 255.2 MPa of an aluminum liner is sufficiently low compared with that of 272 MPa, which is 95% level of a yield stress for aluminum. Also, the composite layers in which are wound on the surface of an aluminum cylinder are safe because the stress ratios from 3.46 to 3.57 in hoop and helical directions are above 2.4 for a minimum safety level. The proposed composite pressure cylinder wound by carbon fibers is useful for 70 MPa hydrogen gas vehicles.

Optimization Process of Type 4 Composite Pressure Vessels Using Genetic and Simulated Annealing Algorithm (유전 알고리즘 및 담금질 기법을 활용한 Type 4 복합재료 압력용기 최적화 프로세스)

  • SONG, GWINAM;KIM, HANSANG
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.4
    • /
    • pp.212-218
    • /
    • 2021
  • In this study, we conducted a design optimization of the Type 4 composite pressure vessels to enhance the pressure-resistant performance of the vessels while keeping the thickness of the composite layer. The design variables for the optimization were the stacking angles of the helical layers of the vessels to improve the performance. Since the carbon fibers are expensive material, it is desirable to reduce the use of the carbon fibers by applying an optimal design of the composite pressure vessel. The structural analysis and optimization process for the design of Type 4 composite pressure vessels were carried out using a commercial finite element analysis software, Abaqus and a plug-in for automated simulation, Isight, respectively. The optimization results confirmed the performance and safety of the optimized Type 4 composite pressure vessels was enhanced by 12.84% compared to the initial design.