DOI QR코드

DOI QR Code

A Study on the Deformation Characteristics of the hydrogen storage vessel(TYPE 1) with Notches using FEM

유한요소법을 이용한 노치가 형성된 수소저장용기 TYPE 1의 거동 특성 연구

  • Seunghyun Cho (Department of Mechanical Engineering, Dongyang Mirae University) ;
  • Sang Hyun Kim (Department of Mechanical Engineering, Dongyang Mirae University) ;
  • Yun Tae Kim (Department of Mechanical Engineering, Dongyang Mirae University) ;
  • Ha Young Choi (Department of Mechanical Engineering, Dongyang Mirae University)
  • 조승현 (동양미래대학교 기계공학과) ;
  • 김상현 (동양미래대학교 기계공학과) ;
  • 김윤태 (동양미래대학교 기계공학과) ;
  • 최하영 (동양미래대학교 기계공학과)
  • Received : 2023.06.05
  • Accepted : 2023.06.25
  • Published : 2023.06.30

Abstract

In this paper, in order to evaluate the deformation characteristics of the hydrogen gas storage vessel(Type 1) when considering gas pressure, the VMS generated in the hydrogen gas storage vessel according to the notch shape of ISO 18119 was interpreted as a FEM(Finite Element Method). According to the analysis results, the maximum VMS generated in the longitudinal notch was higher than the transverse notch. In addition, the stress of the storage vessel was analyzed by the stress ratio, which is the yield strength ratio of the material to the VMS generated. According to the analysis results, in the case of a storage vessel with a notch formed in the longitudinal direction, the inside and outside of the storage vessel increased to 0.85 and 0.50 at a gas pressure of 50 MPa, respectively, but were analyzed to be lower than 1.

본 논문에서는 가스압력을 고려할 때 수소가스 저장용기(Type 1)의 거동특성을 평가하기 위해 ISO 18119의 노치형상에 따라 수소가스 저장용기에서 발생한 VMS(von Mises stress)을 유한요소법으로 해석하였다. 해석결과에 따르면 길이방향 노치에서 발생한 최대 VMS가 원주방향 노치보다 높게 발생하였다. 또한, 저장용기의 거동시 발생한 응력을 VMS와 재료의 항복강도 비인 응력비로 분석하였다. 해석결과에 따르면 노치가 길이방향으로 형성된 저장용기의 경우 가스압력 50 MPa에서 저장용기 내부와 외부가 각각 0.85와 0.50로 증가하였으나 1보다 낮게 분석되었다.

Keywords

Acknowledgement

본 연구는 2023년도 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 연구비 지원으로 수행되었으며, 지원에 감사를 드립니다 (NO. 20215810100040).

References

  1. The GVR, worldwide NGV statistics, (2010)
  2. Park J. S., Jeung S. S., and Chung J. H., "Cycling life prediction method considering compressive residual stress on liner for the filament-wound composite cylinders with metal liner", Composites Research, 19(1), 22-28, (2006)
  3. Hu Y. D., HU Z. Z., and CAO S. Z., "Theoretical study on Manson-Coffin equation for physically short cracks and lifetime prediction", Science China Technological Sciences, 55, 34-42, (2012) https://doi.org/10.1007/s11431-011-4581-z
  4. Kwak D. H., Roh H. R., Kim J. K., and Cho S. B., "A Study on Fretting Fatigue Life Prediction for Cr-Mo Steel(SCM420)", KSPE, 24(1), 123-130, (2007)
  5. Prashant N. and Abhay U., "Fatigue Analysis of 6300 Liters Pressure Vessel By Using Cyclic Service", IJMTER, 1740-1745, (2014)
  6. Kim C. K. and Cho S. H., "Finite Element Analysis of Stress Behaviour Characteristics in Gas Pressure Vessels", KIGAS, 17(3), 58-64, (2003)
  7. Wee S. U.,, Seok C. S.,, Koo J. M., and Lee J. M., "Prediction of Low-Cycle Fatigue Life of In738LC Using Plastic Strain Energy Density", J. Korean Soc. Precis. Eng., 36(4), 401-406, (2019) https://doi.org/10.7736/KSPE.2019.36.4.401
  8. Kim C. K. and Cho S. H., "FE Analysis on the Design Safety of Inner Tank Bottom Plate in Terms of Cryogenic Temperature Loadings", KIGAS, 8(3), 8-15, (2004)
  9. Kim C.K., Cho S. H., Suh H. S., Hong S. H., Lee S.R., Kim Y.G., and Kwon B.G., "On the Leakage Safety Analysis of 9% Nickel Type LNG Storage Tank with Thermal Resistance Effects", KIGAS, 9(1), 1-9, (2005)
  10. International Standard ISO 18119 ; Gas cylinders - Seamless steel and seamless aluminium-alloy gas cylinders and tubes - Periodic inspection and testing
  11. N.E. Dowling, Mechanical Behavior of Materials, Second Edition, p.257, p.261, Prentice Hall Inc.
  12. Low cost hydrogen storage at 875 bar using steel liner and steel wire wrap, Project Performance Period: 9/15/2014 -08/31/2018, WireTough Cylinders, LLC, December 17, (2018)
  13. MSC/MARC 2022, user's manual, (2022)
  14. Seunghyun Cho, Sung Kwang Byon, Yun Tae Kim, Ha Young Choi, "A Numerical Analysis on the Stress Behavior Characteristics of a Pressure Vessel for Hydrogen Filling by FEM", KIGAS, 26(3), 38~44, (2022)
  15. Darya Rudomilova, Gerald H. Luckeneder, "Techniques for investigation of hydrogen embrittlement of advanced high strength steels", Corrossion Reviews, 36(5), 413-434, (2018) https://doi.org/10.1515/corrrev-2017-0106
  16. Harshad Kumar Dharamshi Hansraj Bhadeshia, "Prevention of Hydrogen Embrittlement in Steels", ISIJ Inernational, 56, 24-36, (2016) https://doi.org/10.2355/isijinternational.ISIJINT-2015-430